> 首页 > 文章 > 八卦 > 美国物理学家宣称发现室温超导材料,A股概念股爆火券商忙着“反诈”

美国物理学家宣称发现室温超导材料,A股概念股爆火券商忙着“反诈”

来源:网络 作者:网友上传 时间:06-05 手机版

极目新闻记者 陈俊

据Sciencenews报道,美国太平洋时间3月7日,纽约罗彻斯特大学的Ranga Dias及其团队在拉斯维加斯举行的美国物理学会会议上宣布:在室温超导领域取得重大突破。他们找到了一种新的材料,名为三元镥氮氢体系(ternary lutetium-nitrogen hydrogen system),实现了常温超导。


美国物理学家宣称发现室温超导材料

相关话题引发一场社交媒体狂欢,中国股民8日深夜纷纷建群讨论,相关概念股9日大火。不过券商还是比较冷静,纷纷科普相关知识“反诈”。

21℃即可实现超导?

在主题为《常温近常压条件下氢化物超导特性》的报告中,Dias团队通过使用由氢、氮和镥制成的新材料,在1GPa压强条件和294K(即21℃)的常温条件下观察到该材料的超导特性。其中1GPa的压强条件相当于约1万倍大气压强,与此前类似研究实现常温超导特性所需的近200万倍相比已有巨大突破,与工程材料之中超高强度钢的屈服强度属同一数量级。

Dias团队因此宣称他们已经创造出一种可以在室温以及较低压力条件下工作的超导体,并表示“这是可用于实际工程应用的新材料开端”。

“超导”指导体在某一温度下,电阻为零的状态。自从以电气时代为代表的第二次工业革命爆发以来,与电力息息相关的电阻带来的能量损耗变得愈发重要。导体没有了电阻,电流就可以更强大,从而产生超强磁场。其应用广泛存在于电力、通信电缆,磁悬浮运输,储能等。

所谓室温超导,指的是在室温条件下实现的超导现象。室温超导具备颠覆性,如能实现,有望让超导材料在生产生活中得到大规模应用,全面而又深刻地改变社会发展。

在应用层面,日常使用的电子产品都是基于有电阻的电路,使用过程中电阻产生了大量热能,不仅电力利用效率下降,人类还要考虑严峻的散热问题。若电脑进化为超导计算机,不需要散热的情况下会变得非常轻薄。同时,随着用电效率提升,灯泡会更亮,电动车也将跑得更快。在能源运输侧,超导输电可以把电力几乎无损耗地输送给用户。


报告会活动现场人满为患

如果这个发现是真的,人类将实现飞跃式发展,甚至有人称之为物理界的ChatGPT。这个轰动性的发现引起极大关注,有国外社交平台消息显示,报告会活动现场人满为患,甚至传出著名物理学家被保安拦在外面的画面。

超导研究一直未停

1908年荷兰物理学家昂内斯在制取液氦成功之后,成功将汞降温至4.15K(即零下269℃)并发现超低温下汞材料的电阻降低为零。昂内斯将该现象称为超导现象,并因此获得1913年诺贝尔物理学奖。20年后德国物理学家迈斯纳进一步发现超导现象除了具备零电阻特性之外,还呈现出内部磁场完全为零的完全抗磁性,即迈斯纳效应。

超导现象的两大特性也意味着超导体在以超高压输电为代表的能源传输、核磁共振成像以及以托卡马克核聚变装置和粒子对撞机为代表的高能物理实验领域均有重大应用价值。


来自罗彻斯特大学的Ranga Dias

不过在现实应用中,超导材料又受到临界参量和制作工艺等因素的制约。长期以来,极低温一直是阻碍超导材料在工程领域得到大规模运用的主要因素。直至上世纪下半叶,超导的上限温度(即超导临界温度)一直被认为不会超过30K(即零下243℃)。一般认为,能够在液氮沸点77K(即零下196℃)以上实现超导特性的材料均被称为高温超导体。

1986年,继德国科学家贝德诺尔茨通过使用陶瓷金属氧化物材料首次突破该上限之后,各国围绕着提高超导临界温度的科学竞赛就未曾停止过。尤其是以美国和日本为代表的科学团队,分别在铁基和铜基超导体领域不断刷新超导临界温度。

2015年起,硫化氢在近百万大气压强的极高压条件下也会发生超导相变,改变了这场事关超导临界温度竞赛的科研方向。

团队论文曾遭撤稿

此次发表重大突破的罗彻斯特大学Ranga Dias和美国阿贡国家实验室的Maddury Somayazulu于数年前先后宣布,通过碳质硫化氢和十氢化镧分别在260万和190万个大气压强下实现了288K和260K(即15℃和零下13℃)的超导临界温度新纪录。


页面截图

此后Dias团队通过向硫化氢材料之中添加其他元素以期进一步提高超导临界温度,在经历过添加钇元素无功而返之后,此次取得突破的关键则在于结合了镥元素的三元镥氮氢体系的使用。

公开资料显示,Dias先后毕业于斯里兰卡的科伦坡大学以及美国华盛顿州立大学,现任罗彻斯特大学机械工程与物理系的助教。他的团队过去四年来在超导材料上的不断尝试,也意味着此次进入公众视野的突破本质上仍是渐进性的科研创新,不宜过度解读。

同时,值得注意的是,该团队于在2020年10月发表的一篇类似论文受到质疑,最终导致《自然》杂志撤稿,这表明该团队的最新研究成果将面临更为严格的审查。

股民狂欢券商忙反诈

市场层面,9日A股室温超导题材刷爆网络,永鼎股份、法尔胜和百利电气一字板涨停,之前市场关注度最高的西部超导反而高开幅度不如它们,宝胜股份、西部材料、精达股份、汉缆股份、东方钛业、联创光电等也有较大幅度的高开。


网友评论

室温超导的传闻首先点燃的不是行情,而是“维权”,还没买股先进维权群,“常温超导维权群”被挤爆了头。3月8日晚间,各种“常温超导维权群”截图在社交平台流传,而多个群在一个小时之内就有200多人加入。对于这种“预热”维权的方式,也有讨论的网友疑惑“没亏钱怎么维权?”券商分析师、A股相关标的公司董秘也纷纷加入群,有网友建议董秘可以先建维权群,也有分析师表示:“看完大家维权,会尽快抛出一篇超导芯片概念组合分析报告。”

社交平台上各种段子接踵而至,民生证券分析师也第一时间开了专家会议,尽管名称为“超导技术及应用专家会议”,看起来非常贴近热点,该券商分析师在社交平台表示,这个会是反诈宣传。结论就是“常温常压是不行的,高温超导才是靠谱的”,请大家注意风险。

几几年什么国的物理学家在哪首先发现了超导体

1911年,荷兰科学家卡末林—昂内斯((Heike Kamerlingh-Onnes)用液氦冷却汞,当温度下降到4.2K时,水银的电阻完全消失,这种现象称为超导电性,此温度称为临界温度。根据临界温度的不同,超导材料可以被分为:高温超导材料和低温超导材料[1]。但这里所说的「高温」,其实仍然是远低于冰点摄氏0摄氏度的,对一般人来说算是极低的温度。1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。经过科学家们的努力,超导材料的磁电障碍已被跨越,下一个难关是突破温度障碍,即寻求高温超导材料。
1973年,发现超导合金――铌锗合金,其临界超导温度为23.2K,这一记录保持了近13年。
1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧钡铜氧化物)具有35K的高温超导性。此后,科学家们几乎每隔几天,就有新的研究成果出现。
1986年,美国贝尔实验室研究的超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。
1987年,美国华裔科学家朱经武以及中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的“温度壁垒”(77K)也被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从1986-1987年的短短一年多的时间里,临界超导温度提高了近100K。
来自德国、法国和俄罗斯的科学家利用中子散射技术,在高温超导体的一个成员单铜氧层Tl2Ba2CuO6+δ中观察到了所谓的磁共振模式,进一步证实了这种模式在高温超导体中存在的一般性。该发现有助于对铜氧化物超导体机制的研究。
高温超导体具有更高的超导转变温度(通常高于氮气液化的温度),有利于超导现象在工业界的广泛利用。高温超导体的发现迄今已有16年,而对其不同于常规超导体的许多特点及其微观机制的研究,却仍处于相当“初级”的阶段。这一点不仅反映在没有一个单一的理论能够完全描述和解释高温超导体的特性,更反映在缺乏统一的、在各个不同体系上普遍存在的“本征”实验现象。本期Science所报道的结果意味着中子散射领域里一个长期存在的困惑很有可能得到解决。
早在1991年,法国物理学家利用中子散射技术在双铜氧层YBa2Cu3O6+δ超导体单晶中发现了一个微弱的磁性信号。随后的实验证明,这种信号仅在超导体处于超导状态时才显著增强并被称为磁共振模式。这个发现表明电子的自旋以某种合作的方式产生一种集体的有序运动,而这是常规超导体所不具有的。这种集体运动有可能参与了电子的配对,并对超导机制负责,其作用类似于常规超导体内引起电子配对的晶格振动。但是,在另一个超导体La2-xSrxCuO4+δ(单铜氧层)中,却无法观察到同样的现象。这使物理学家怀疑这种磁共振模式并非铜氧化物超导体的普遍现象。1999年,在Bi2Sr2CaCu2O8+δ单晶上也观察到了这种磁共振信号。但由于Bi2Sr2CaCu2O8+δ与YBa2Cu3O6+δ一样,也具有双铜氧层结构,关于磁共振模式是双铜氧层的特殊表征还是“普遍”现象的困惑并未得到彻底解决。
理想的候选者应该是典型的高温超导晶体,结构尽可能简单,只具有单铜氧层。困难在于,由于中子与物质的相互作用很弱,只有足够大的晶体才可能进行中子散射实验。随着中子散射技术的成熟,对晶体尺寸的要求已降低到0.1厘米3的量级。晶体生长技术的进步,也使Tl2Ba2CuO6+δ单晶体的尺寸进入毫米量级,而它正是一个理想的候选者。科学家把300个毫米量级的Tl2Ba2CuO6+δ单晶以同一标准按晶体学取向排列在一起,构成一个“人造”单晶,“提前”达到了中子散射的要求。经过近两个月散射谱的搜集与反复验证,终于以确凿的实验数据显示在这样一个近乎理想的高温超导单晶上也存在磁共振模式。这一结果说明磁共振模式是高温超导的一个普遍现象。而La2-xSrxCuO4+δ体系上磁共振模式的缺席只是“普遍”现象的例外,这可能与其结构的特殊性有关。
关于磁共振模式及其与电子间相互作用的理论和实验研究一直是高温超导领域的热点之一,上述结果将引起许多物理学家的关注与兴趣。
20世纪80年代是超导电性的探索与研究的黄金年代。1981年合成了有机超导体,1986年缪勒和柏诺兹发现了一种成分为钡、镧、铜、氧的陶瓷性金属氧化物LaBaCuO4,其临界温度约为35K。由于陶瓷性金属氧化物通常是绝缘物质,因此这个发现的意义非常重大,缪勒和柏诺兹因此而荣获了1987年度诺贝尔物理学奖。
1987年在超导材料的探索中又有新的突破,美国休斯顿大学物理学家朱经武小组与中国科学院物理研究所赵忠贤等人先后研制成临界温度约为90K的超导材料YBCO(钇铋铜氧)。
1988年初日本研制成临界温度达110K的Bi-Sr-Ca-Cu-O超导体。至此,人类终于实现了液氮温区超导体的梦想,实现了科学史上的重大突破。这类超导体由于其临界温度在液氮温度(77K)以上,因此被称为高温超导体。
自从高温超导材料发现以后,一阵超导热席卷了全球。科学家还发现铊系化合物超导材料的临界温度可达125K,汞系化合物超导材料的临界温度则高达135K。如果将汞置于高压条件下,其临界温度将能达到难以置信的164K。
1997年,研究人员发现,金铟合金在接近绝对零度时既是超导体同时也是磁体。1999年科学家发现钌铜化合物在45K时具有超导电性。由于该化合物独特的晶体结构,它在计算机数据存储中的应用潜力将是非常巨大的。
自2007年12月开始,中国科学院物理研究所的陈根富博士已投入到镧氧铁砷非掺杂单晶体的制备中。今年2月18日,日本东京工业大学的细野秀雄教授和他的合作者在《美国化学会志》上发表了一篇两页的文章,指出氟掺杂镧氧铁砷化合物在零下247.15摄氏度时即具有超导电性。在长期研究中保持着跨界关注习惯的陈根富和王楠林研究员立即捕捉到了这一消息的价值,王楠林小组迅速转向制作掺杂样品,他们在一周内实现了超导并测量了基本物理性质。
几乎与此同时,物理所闻海虎研究组通过在镧氧铁砷材料中用二价金属锶替换三价的镧,发现有临界温度为零下248.15摄氏度以上的超导电性。
3月25日和3月26日,中国科学技术大学陈仙辉组和物理所王楠林组分别独立发现临界温度超过零下233.15摄氏度的超导体,突破麦克米兰极限,证实为非传统超导。
3月29日,中国科学院院士、物理所研究员赵忠贤领导的小组通过氟掺杂的镨氧铁砷化合物的超导临界温度可达零下221.15摄氏度,4月初该小组又发现无氟缺氧钐氧铁砷化合物在压力环境下合成超导临界温度可进一步提升至零下218.15摄氏度。
为了证实(超导体)电阻为零,科学家将一个铅制的圆环,放入温度低于Tc=7.2K的空间,利用电磁感应使环内激发起感应电流。结果发现,环内电流能持续下去,从1954年3月16日始,到1956年9月5日止,在两年半的时间内的电流一直没有衰减,这说明圆环内的电能没有损失,当温度升到高于Tc时,圆环由超导状态变正常态,材料的电阻骤然增大,感应电流立刻消失,这就是著名的昂尼斯持久电流实验。
[编辑本段]超导技术谈
1911年,荷兰莱顿大学的卡茂林-昂尼斯意外地发现,将汞冷却到-268.98℃时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡茂林-昂尼斯称之为超导态。卡茂林由于他的这一发现获得了1913年诺贝尔奖。
这一发现引起了世界范围内的震动。在他之后,人们开始把处于超导状态的导体称之为“超导体”。超导体的直流电阻率在一定的低温下突然消失,被称作零电阻效应。导体没有了电阻,电流流经超导体时就不发生热损耗,电流可以毫无阻力地在导线中流大的电流,从而产生超强磁场。
1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感兴强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。
后来人们还做过这样一个实验:在一个浅平的锡盘中,放入一个体积很小但磁性很强的永久磁体,然后把温度降低,使锡盘出现超导性,这时可以看到,小磁铁竟然离开锡盘表面,慢慢地飘起,悬空不动。
迈斯纳效应有着重要的意义,它可以用来判别物质是否具有超性。
为了使超导材料有实用性,人们开始了探索高温超导的历程,从1911年至1986年,超导温度由水银的4.2K提高到23.22K(绝对零度代号为 K = -273℃)。86年1月发现钡镧铜氧化物超导温度是30度,12月30日,又将这一纪录刷新为40.2K,87年1月升至43K,不久又升至46K和53K,2月15日发现了98K超导体,很快又发现了14℃下存在超导迹象,高温超导体取得了巨大突破,使超导技术走向大规模应用。
超导材料和超导技术有着广阔的应用前景。超导现象中的迈斯纳效应使人们可以到用此原理制造超导列车和超导船,由于这些交通工具将在无摩擦状态下运行,这将大大提高它们的速度和安静性能。超导列车已于70年代成功地进行了载人可行性试验,1987年开始,日本国开始试运行,但经常出现失效现象,出现这种现象可能是由于高速行驶产生的颠簸造成的。超导船已于1992年1月27日下水试航,目前尚未进入实用化阶段。利用超导材料制造交通工具在技术上还存在一定的障碍,但它势必会引发交通工具革命的一次浪潮。
超导材料的零电阻特性可以用来输电和制造大型磁体。超高压输电会有很大的损耗,而利用超导体则可最大限度地降低损耗,但由于临界温度较高的超导体还未进入实用阶段,从而限制了超导输电的采用。随着技术的发展,新超导材料的不断涌现,超导输电的希望能在不久的将来得以实现。
现有的高温超导体还处于必须用液态氮来冷却的状态,但它仍旧被认为是20世纪最伟大的发现之一。

我是一名对物理比较感兴趣的初中生我想知道一些关于我过的物理学家的事

陈难先

现有院士

物理学家。祖籍浙江杭州,生于上海。1962年毕业于北京大学物理系。1984年获美国宾夕法尼亚大学电气工程与科学博士学位。曾任北京科学技术大学教授、应用物理研究所所长。2000年起担任清华大学物理系教授。在国际上明确提出凝聚态物理和应用物理中玻色、费米及晶格三大类逆问题,并发展了独特而系统的方法,得到一系列新结果。在晶格比热逆问题研究中发展并统一了爱因斯坦与德拜的经典工作。在原子间相互作用势库研究中提出了由晶体结合能到对势的严格简捷公式并发展了EAM多体势,为复杂材料性能预测建立了良好基础。1997年当选为中国科学院院士。

程开甲

资深院士

理论物理学家。江苏吴江人。1941年毕业于浙江大学。1948年获英国爱丁堡大学哲学博士学位。中国人民解放军总装备部科技委顾问。中国核武器研究的开创者之一,在核武器的研制和试验中作出了开拓性的突出贡献。开创了我国抗核加固技术新领域和定向能高功率微波研究的新领域。同时在固体物理方面取得了重要研究成果,提出了普遍的热力学内耗理论,导出了狄拉克方程,提出并发展完善了超导电的双带理论,提出了凝聚态的新的电子理论(TFDC),并出版了我国第一本固体物理学专著。1980年当选为中国科学院院士(学部委员)。

丁大钊

已故院士

核物理学家。江苏苏州人。1955年毕业于复旦大学物理系。中国原子能科学研究院研究员、院科技顾问。1959年参加发现反西格马负超子,提出并发展了一种确定径迹气泡密度、进而鉴别粒子的方法,为鉴定与分析反西格马负超子事例解决了关键问题。60年代初负责轻核反应实验小组,为完成氢弹研制所需部分基础数据的测量准备了条件。70年代中期及以后负责开辟快中子核反应γ谱学分支学科,并领导热中子辐射俘获与原子核巨共振研究。80年代负责串列加速器核物理实验室的实验区建设,建成适于进行精细核反应谱学与核结构研究的实验室。1990-1995年兼任北京正负电子对撞机国家实验室副主任,负责同步辐射应用并参与建议高性能同步辐射光源的建设。近年来负责开展“加速器驱动放射性洁净核能系统”的研究工作。1991年当选为中国科学院院士(学部委员)。

方成

现有院士

天体物理学家。江苏江阴人。1959年毕业于南京大学天文系。南京大学教授,中国天文学会理事长,国家攀登计划首席科学家。首先系统掌握与运用非局部热动平衡理论并发展了整套的实用计算方法和程序;在太阳活动体结构和大气模型、耀斑谱线不对称性和速度场、耀斑动力学模型和光谱诊断等研究中获重要成果;主持设计和研制了我国第一座太阳塔、创建了太阳塔实验室。曾获国家科技进步二等奖、国家自然科学三等奖、教育部科技进步一、二等奖。1995年当选为中国科学院院士。

甘子钊

现有院士

物理学家。广东信宜人。1963年北京大学物理系研究生毕业。北京大学物理系教授、固体物理研究所所长,国家超导专家委员会首席专家。60年代初对半导体中隧道效应做了较好的工作,解决了锗中隧道过程的物理机理。70年代初在发展我国大能量气动激光上做出贡献。70年代后期提出一个基本正确的多原子分子多光子离解的物理模型。80年代初发展了光在半导体中相干传播的理论。80年代中,在凝聚态物理的一些前沿,如分数量子霍尔效应、金属-绝缘体相变、磁性半导体量子阱中极化子、杂质共振态等方面做出一些贡献。1986年以来,在我国高温超导电性的研究和发展上起重要作用。1991年当选为中国科学院院士(学部委员)。

管惟炎

已故院士

物理学家。江苏如东人。1957年毕业于苏联莫斯科大学。研究员。主要从事低温与超导的研究。50年代对反向卡皮查热阻问题作了深入研究,解释了当时文献上存在的理论与实验间的严重分歧。60年代以来在中国首先倡导并进行强磁场超导材料与超导磁体的研制,合作研制出多种性能达国际先进水平的超导材料;解决了第二类超导体临界场与临界电流的起源问题;研究发现了超导体在磁场中转变时的负磁阻效应。1980年当选为中国科学院院士(学部委员)。

何泽慧

资深院士

核物理学家。女。原籍山西灵石,生于江苏苏州。1936年毕业于清华大学。1940年获德国柏林高等工业大学工程博士学位。中国科学院高能物理研究所研究员。在德国海德堡皇家学院(K.W.I)核物理研究所期间,首先发现并研究了正负电子几乎全部交换能量的弹性碰撞现象;在法国巴黎法兰西学院核化学实验室工作期间,与合作者首先发现并研究了铀的三分裂和四分裂现象;建国初期,与合作者自立更生研制成功对粒子灵敏的原子核乳胶探测器;在领导建设实验室、高山宇宙线观察站、高空气球、开展高能天体物理等多领域研究方面,作出了重要贡献。1980年当选为中国科学院院士(学部委员)。

贺贤土

现有院士

理论物理学家。浙江镇江人。1962年毕业于浙江大学物理系。中国工程物理研究院研究员。在我国核武器研究中作出了突出成绩。作为首席科学家,领导国家“863计划”惯性约束聚变主题专家组工作,为我国形成一个独立自主的惯性约束聚变研究体系作出了重要贡献。提出了较低温度下局部热动平衡点火发展到非局部热动平衡燃烧的模型。与研究群体一起获得我国首次间接驱动出热核中子的重要进展。在等离子体物理研究中,在国际上首次获得电磁波产生自生磁场的正确表达式及首次Vlasov—Maxwell方程组导得立方—五次方非线性薛定谔方程和它的孤立波解,并获得了粒子在孤立波中加速机制、等离子体相干结构小尺度湍流等多项创造性成果。在非线性科学研究中,在国内率先进行了近可积哈密顿系统Pattern动力学和时空混沌研究,国外文献评论为发现了上述系统的时空混沌和一种新的途径。1995年当选为中国科学院院士。

洪朝生

资深院士

物理学家。北京人。1940年毕业于清华大学,1948年获美国麻省理工学院物理学博士学位。现任中国科学院理化技术研究所低温技术实验中心研究员。是中国低温物理与低温技术研究的开创者之一。1950年在美国普度大学发现了半导体锗单晶低温电导与霍耳效应的反常行为,并提出了半导体禁带中杂质导电的新概念。20世纪50年代以来,创建中国科学院物理研究所低温物理实验室,建造氢、氦液化系统,开始了低温、超导研究,并进一步开拓低温制冷与实验技术研究;参与创办中国科技大学低温物理专业;负责组建了中国科学院低温技术实验中心,致力于低温工程技术与低温物理的综合研究与应用开发;积极参与中国制冷学会和国际低温工程理事会的学术组织工作,推动国内外学术交流,获国际低温工程理事会2000度门德尔森奖。1980年当选为中国科学院院士(学部委员)。

黄昆

已故院士

固体物理、半导体物理学家。原籍浙江嘉兴,生于北京。1941年毕业于燕京大学。1948年获英国布里斯托尔大学博士学位。1980年当选为瑞典皇家科学院外籍院士。1985年当选为第三世界科学院院士。中国科学院半导体研究所研究员、名誉所长。主要从事固体物理理论、半导体物理学等方面的研究并取得多项国际水平的成果,是中国半导体物理学研究的开创者之一。 50 年代与合作者首先提出多声子的辐射和无辐射跃迁的量子理论即“黄-佩卡尔理论”;首先提出晶体中声子与电磁波的耦合振动模式及有关的基本方程(被誉为黄方程)。40年代首次提出固体中杂质缺陷导致 X光漫散射的理论(被誉为黄散射)。证明了无辐射跃迁绝热近似和静态耦合理论的等价性,澄清了这方面的一些根本性问题。获2001年度国家最高科学技术奖。1955年选聘为中国科学院院士(学部委员)。

黄润乾

现有院士

天体物理学家。生于北京,原籍湖南衡山。1958年毕业于德国席勒大学。中国科学院云南天文台研究员。长期从事恒星物理研究。在双星非守恒演化、星风冲击波理论和星风物质损失等问题上作出了重要贡献。发现了双星有物质损失和角动量损失情况下的各种复杂因素,将双星非守恒演化奠定在严密的数理基础上;与Weigert合作,最先提出星风冲击波理论,在国际上得到广泛应用,并为紫外和X射线卫星的大量观测结果所证实;与Weigert合作,发现对流超射对恒星演化的重要效应,并提出用造父变星的演化程来判别对流超射区大小,从而可以利用天文观测确定对流超射的方法。1999年当选为中国科学院院士。

黄胜年

现有院士

核物理学家。江苏太仓人。1950-1952年在清华大学物理系学习,1952- 1955 年在苏联列宁格勒大学物理系学习。中国原子能科学研究院研究员、中国核工业研究生部顾问。测定或澄清了(国外有分歧的)核能利用所需要的某些核数据。完成了各种能量中子引起铀、钚、钍核素以及铀-238、钚-240自发裂变体系的实验。建立方法与装置,完成了金属铀本底中子的测定。1979年后,与合作者一起对锎-252自发裂变这种典型的低激发能裂变进行了系统的详细的实验,观察到高动能事件碎片质量分布上的精细结构,并得出氚和α粒子伴随裂变(三分裂)的各种关联特性。1991年当选为中国科学院院士(学部委员)。

黄祖洽

资深院士

理论物理学家。湖南长沙人。1948年毕业于清华大学,1950年该校研究生院研究生毕业。北京师范大学教授。主要从事核理论、中子理论、反应堆理论、输运理论及非线性动力学等方面的研究,是中国核武器理论研究和设计的主要学术带头人之一,积极参加和领导了中国原子弹理论的研究工作,对中国核武器的研制成功、设计定型及其他一系列科学试验研究作出了重要贡献。对中国第一个重水反应堆作了理论计算并纠正了苏联专家设计的临界大小数据。近年来在氢分子激发态的相互作用,及浸润相变理论及噪声在随机系统中的影响等方面作了大量研究。1980年当选为中国科学院院士(学部委员)。

李家明

现有院士

物理学家。云南昆明人。1968年毕业于台湾大学电机工程系。1974年获美国芝加哥大学物理系博士学位。1992年当选为第三世界科学院院士。清华大学原子分子测控科学中心主任、教授,中国科学院物理研究所研究员。研究发展了多通道量子数亏损理论;应用量子电动力学于高能原子过程,阐明了电子轫致辐射过程(高能光子能区)和辐射复合过程的内在关系;建立相对论性多通道量子数亏损理论,为分析高离化度、高Z原子的激发态能级结构建立了理论基础;建立了非相对论性多重散射的分子自洽场理论计算方法,并阐明分子里德伯态的电子结构;同时建立了原子超越自洽场的多通道理论计算方法,以阐明电子关联效应。1991年当选为中国科学院院士(学部委员)。

李惕碚

现有院士

高能天体物理学家。生于重庆北碚,原籍湖南攸县。1963年毕业于清华大学工程物理系。中国科学院高能物理研究所研究员,宇宙线与高能天体物理开放实验室学术委员会主任;清华大学教授,清华天体物理中心主任。主要从事宇宙线物理和高能天体物理方面的研究。在宇宙线和高能天体物理实验研究与数据分析等方面取得重要成果。在国内倡议和组织开拓了高能天体物理的实验研究。提出了银河系γ射线源的统计模型并获国际共识。建立了寻找超高能天体的计算公式,已成为宇宙线和高能天体物理数据分析的一个标准方法。建立了对象重建的直接解调方法和研究快速变化现象的时域谱方法,获得日益广泛的应用。1997年当选为中国科学院院士。

马大猷

资深院士

物理学家。原籍广东潮阳,生于北京。1936年毕业于北京大学。1939年获美国哈佛大学硕士、哲学博士学位。中国科学院声学研究所研究员。主要从事物理声学建筑声学的研究,是房间声学中简正波理论,所提出的简洁的简正波计算公式和房间混响的新分析方法已成为当代建筑声学发展的新里程碑,并已广泛应用。50年代领导设计建造了具有独创性的中国第一个声学实验室,提出了语音统计分析分布的新理论,成功地领导了北京人民大会堂的音质设计,并在吸声结构、喷注噪声及其理论和应用、环境科学、非线性声学等多方面提出重要理论。1955年选聘为中国科学院院士(学部委员)

欧阳钟灿

现有院士

理论物理学家。福建泉州人。1968年毕业于清华大学自动控制系,1981、1984年相继获该校物理系理学硕士、理学博士学位。中国科学院理论物理研究所研究员。主要从事凝聚态物理中生物膜液晶模型理论、液晶物理及应用基础理论等研究。从曲面变分技术导出了用曲面曲率及其微分表示含自发曲率膜泡的普遍形状方程;首次从理论上预言应存在着半径比为2的平方根与无穷的两种亏格为1的环形膜泡并获实验完全证实;提出了突破Helfrich流体膜框架的手征膜理论;合作发现了膜形状方程的四类解析解;提出D∞h对称液晶光倍频理论并与实验完全符合;给出了超扭曲液晶盒弱锚泊条件下指向矢的严格解。1997年当选为中国科学院院士。

彭桓武

资深院士

物理学家。原籍湖北麻城,生于吉林长春。1940年获英国爱丁堡大学哲学博士学位。1948年当选为爱尔兰皇家科学院院士。中国科学院理论物理研究所研究员、名誉所长。一直从事理论物理的基础和应用研究,先后在中国开展关于原子核、双粒子化学键、钢锭快速加热工艺、反应堆理论和工程设计以及临界安全等多方面研究。对中国原子能科学事业做了许多开创性的教学培训和学术组织领导工作。对中国第一代原子弹和氢弹的研究和理论设计作出了一定的贡献。1955年选聘为中国科学院院士(学部委员)。

钱伟长

资深院士

物理学、力学、应用数学家。江苏无锡人。1935年毕业于清华大学物理系。1942年获加拿大多伦多大学应用数学系博士学位。1955年当选为波兰科学院院士。上海大学校长,上海市力学和应用数学研究所所长。我国力学、应用数学、中文信息学的奠基人之一。创建了板壳内檩统一理论和浅壳的非线性微分方程组,在波导管理论、奇异摄动理论、润滑理论、环壳理论、广义变分原理、有限元法、穿甲力学、大电机设计、高能电池、空气动力学、中文信息等方面都有重要贡献。1955年选聘为中国科学院院士(学部委员)。

钱学森

资深院士

应用力学、工程控制论、系统工程科学家。原籍浙江杭州,生于上海。1934年毕业于上海交通大学。1939年获美国加州理工学院航空、数学博士学位。1994年选聘为中国工程院院士。中国人民解放军总装备部科技委高级顾问、研究员。中国力学学会、中国自动化学会、中国宇航学会、中国系统工程学会名誉理事长,中国科学院学部主席团名誉主席,中国科学技术协会名誉主席。曾任第七机械工业部副部长和国防科学技术委员会副主任和中国科学技术协会主席。在应用力学、工程控制论、系统工程等多领域取得出色研究成果,在中国航天事业的创建与发展等方面作出了卓越贡献。1991年获“国家杰出贡献科学家”荣誉称号。1999年获“两弹一星功勋奖章”。1957年选聘为中国科学院院士(学部委员)。

曲钦岳

现有院士

天体物理学家。山东牟平人。1957年毕业于南京大学。1990年当选为第三世界科学院院士。南京大学教授。中国最早在高能天体物理学这一新兴学科进行研究的天文学家之一。在中子星、X射线源、γ射线源等前沿领域取得一系列研究成果。与合作者得出了关于脉冲星能损率-特征时标的统计曲线,并澄清了国际上关于JP1953是否为中子星的争论;与合作者提出了反常中子星可能是致密星体的一种新类型,并得出了反常中子星的质量极限;提出了某些形态特异的超新星遗迹的理论模型等。1980年当选为中国科学院院士(学部委员)。

沈文庆

现有院士

实验核物理学家。生于上海。1967年毕业于清华大学工程物理系。中国科学院上海原子核研究所研究员。在中国科学院近代物理研究所和合作者一起在73MeV以下的12C+209Bi发射粒子研究中,证实低能核反应中有大质量转移反应引起的α粒子发射。研究证实轻系统存在深部非弹性散射,并证实了有非完全深部非弹性散射的新反应机制。在负责兰州国家重离子加速器实验区建设与组织一批实验方面作出重要贡献。80年代在德国重离子研究中心用软件修正方法获得当时国际上最佳的质量与电荷分布,测到4个新核素。测量了准裂变的物理特性和质量弛豫时间并分析了对合成超重核的影响。90年代在中国科学院上海原子核研究所和学生一起,提出了适用于低能和中能的核反应截面参数化公式;发展了用BUU方程计算反应截面的新方法,指出了轻丰中子核的中子分布弥散度增加的原因。研究得出了轻反应系统核态方程和介质中核子-核子作用截面。1999年当选为中国科学院院士。

沈学础

现有院士

物理学家。江苏溧阳人。1958年毕业于复旦大学物理系。中国科学院上海技术物理研究所研究员。发展了光学补偿双光束傅里叶变换红外光谱方法,发现了声学局域模。发展了傅里叶变换光热电离谱方法,使硅中浅杂质检测灵敏度有数量级的提高。提出和首次实现了带间跃迁、激子跃迁诱发并共振增强调制和回旋共振光谱方法。发展了高压下调制吸收光谱测量方法。对超晶格量子阱、半磁半导体和非晶半导体光谱等作了大量研究,著有《半导体光学性质》等书。1995年当选为中国科学院院士。

苏定强

现有院士

天文学家。生于上海,原籍江苏武进。中国科学院国家天文台研究员。1959年毕业于南京大学天文系。现为国际天文学联合会(LAU)第9委员会(天文仪器与技术)主席、中国科学院天文学专家委员会委员、南京大学兼职教授。曾任中国天文学会副理事长、国家自然科学奖评委、北京天文台客座研究员、中国科学技术大学、北京师范大学兼职教授。在大望远镜光学系统的研究中,提出了一系列新的折轴系统,提出了透棱镜改正器,这些工作受到了国际上的高度好评,并已在国内外的一些望远镜中应用。和王亚男研究员共同建立了一个特殊的光学系统优化程序,自1972年以来用于我国天文光学系统的设计中。和王绶馆院士共同提出了大天区面积多目标光纤光谱望远镜(LAMOST)的初步方案,现正在研制中。领导研制成我国第一个双折射滤光器、第一个主动光学实验系统。在大望远镜总体方案、非球面光学系统、高级象差、光学系统优化、双折射滤光器、主动光学等方面完成了多项研究,共发表论文58篇。曾获国家科技进步一等奖一次,国家自然科学二等奖一次,中国科学院奖四次,均为第一完成人。1999年获何梁何利科技进步奖。1991年当选为中国科学院院士(学部委员)。

汪承灏

现有院士

物理学家。生于江苏南京。1958年毕业于北京大学物理系。中国科学院声学研究所研究员。建立了压电晶体表面激发的广义格林函数理论,它构成现代声表面波技术的理论基础。根据这个普适的表面激发理论,给出了压电晶体表面源产生的衍射场严格分析,克服了流行的角谱理论的缺陷;得到了声表面波在表面栅阵产生散射场的准确表达。发展了一些声表面波和高频体波器件和系统。根据对压电振动系统电气负载特性的研究,提出压电可调频换能器的结构和压电振动阻尼原理。还开展了单一空化气泡声致发光的研究,发现除光辐射外还存在电磁辐射,并证明辐射均发生在空化的闭合瞬间。2001年当选为中国科学院院士。

王迅

现有院士

表面物理、半导体物理学家。1934年出生于上海。原籍江苏无锡。1956年毕业于复旦大学物理系,1960年该系研究生毕业。复旦大学教授。对半导体表面和界面的结构和电子态做了系统研究,其中对InP极性表面进行了开拓性研究。在多孔硅研究方面发现多孔硅的光学非线性现象,实现多孔硅的蓝光发射并被国际上引为1992年多孔硅研究的6项进展之一,发现多孔硅发光峰位钉扎现象,测量了多孔硅/硅界面的能带偏移。在高质量锗硅超晶格的研制、锗硅量子阱和量子点物理特性的研究、新型硅锗器件的合作研制等方面作出多项创新成果。领导建成应用表面物理国家重点实验室并领导研究取得多项重要成果。1999年当选为中国科学院院士。

吴式枢

资深院士

理论物理学家。江西宜黄人。1944年毕业于同济大学。1951年获美国伊利诺斯州立大学哲学博士学位。吉林大学教授。主要从事原子核理论特别是核多体理论方面的研究与教学工作。50年代应用壳模型理论处理μ介子和光核效应,被称为“吴模型”。建立和发展了格林函数方法和非线性积分方程理论以及推广的组态混合法;利用格林函数方法系统地研究了零温和有限温的核性质、核结构与相对论多体问题,得到了有限温与相对论等效相互作用的严格表达式。提出了相位介电测井新方法,解决了判断油田水淹层的难题。1980年当选为中国科学院院士(学部委员)。

席泽宗

现有院士

天文史学家。山西垣曲人。1951年毕业于中山大学天文系。国际科学史研究院院士,国际欧亚科学院院士。中国科学院自然科学史研究所研究员。提出了从史书中鉴别新星的7条标准和区别新星与超新星的2条标准,从中、朝、日3国的历史文献中找出90个疑似新星,其中有12个可能属于超新星,并讨论了这12个超新星和当今观测到的超新星遗迹以及射电源的关系。提出木星的伽利略卫星不用望远镜也能看到,战国时期即已观察到木卫3。对马王堆出土的天文资料和敦煌卷子中的天文资料做了系统研究。对天文学思想和中国古代的宇宙理论也做了深入的研究。1991年当选为中国科学院院士(学部委员)。

冼鼎昌

现有院士

理论物理学家及同步辐射应用专家。广东广州人。1956年毕业于北京大学物理系。中国科学院高能物理研究所研究员。领导建成我国第一个同步辐射实验室,在科学规划、物理设计、工程设计等方面都作出了正确的决策,同时解决了设计、施工、安装、调试中出现的一系列问题,在专用模式运行下其性能已达到或接近国际上正在运行的第二代同步辐射光源的水平,并已利用同步辐射进行研究工作。发展了相对论不变的相空间计算方法、累积量变分法、解析延拓法等,在经典规范场、介子四维波函数和格点规范场理论研究中取得多项重要成果。与国外同时提出X光光声EXAFS的设想,开拓了同步辐射应用的新领域。1991年当选为中国科学院院士(学部委员)。

谢家麟

资深院士

加速器物理学家。生于黑龙江省哈尔滨市,原籍河北武清。1943年毕业于燕京大学。1951年获美国斯坦福大学物理系博士学位。现任中国科学院高能物理研究所研究员。在美期间,曾领导研制成功世界上能量最高的医用电子直线加速器。1955年回国后,于60年代初领导完成一台可向高能发展的电子直线加速器、大功率速调管和电子回旋加速器等科研目。80年代领导北京正负电子对撞机工程的设计、研制和建造。90年代初领导建成北京自由电子激光。1980年当选为中国科学院院士(学部委员)。

熊大闰

现有院士

天文学家。原籍江西南昌,生于江西吉安。1962年毕业于北京大学地球物理系。中国科学院紫金山天文台研究员,国家攀登计划项目“天体剧烈活动的多波段观测和研究”首席科学家。在恒星对流理论以及与之有关的恒星结构、演化和脉动稳定性问题的研究中,摒弃了传统的混合长的对流理论,发展了一种独立的非定常恒星对流的统计理论和一种非局部对流的统计理论,并成功地将它们用于变星脉动和大质量恒星演化的理论计算,解释了变星脉动不稳定区红端边界,克服了传统理论在大质量恒星演化计算中著名的所谓半对流区的理论困难。较之传统理论,新理论得到与观测更为相符的结果。1991年当选为中国科学院院士(学部委员)。

徐至展

现有院士

物理学家。江苏常州人。1962年毕业于复旦大学。1965年北京大学研究生毕业。中国科学院上海光学精密机械研究所研究员、所长。长期主持激光核聚变研究,在实现激光打靶发射中子、微球靶压缩、建立总体计算机编码及建成6路激光打靶装置等项重大成果中均有突出贡献。在激光与等离子体相互作用领域,特别是在非线性过程或不稳定性研究方面,从实验与理论上进行了系统的深入研究,取得多项开创性重要成果。在X射线激光领域,1981年已实现粒子数反转并发现新反转区;首次在国际上用类锂和类钠离子方案获得8条新波长的X射线激光,最短波已达到46.8埃。在强场激光科学技术领域,特别是在新型超短超强激光、强场激光与原子、分子、电子、团簇、等离子体的相互作用以及强激光驱动粒子加速等研究方面都取得重要成果。1991年当选为中国科学院院士(学部委员)。

杨福家

现有院士

核物理学家。原籍浙江镇海,出生于上海。1958年毕业于复旦大学物理系。1991年当选为第三世界科学院院士。复旦大学教授,中国科学院上海原子核研究所所长。领导、组织并基本建成了“基于加速器的原子、原子核物理实验室”。给出复杂能级的衰变公式,概括了国内外已知的各种公式,用于放射性厂矿企业,推广至核能级寿命测量,给出图心法测量核寿命的普适公式;领导实验组用γ共振吸收法发现了国际上用此法找到的最窄的双重态。在国内开创离子束分析研究领域。在束箔相互作用方面,首次采用双箔(直箔加斜箔)研究斜箔引起的极化转移,提出了用单晶金箔研究沟道效应对极化的影响,确认极化机制。代表性专著有《现代原子与原子核物理》。1991年当选为中国科学院院士(学部委员)。

杨立铭

已故院士

理论物理学家。江苏溧水人。 1942年毕业于重庆中央大学机械系。1948年获英国爱丁堡大学理论物理博士学

求当代著名的物理学家及其发明著作,杰出贡献?

史蒂芬·霍金,1942年1月8日出生于英国牛津.毕业于牛津大学气象学(Oxford University)和剑桥大学(Cambridge University),并获剑桥大学哲学博士学位.他因为在21岁时不幸患上了会使肌肉萎缩的卢伽雷氏症,所以被禁锢在轮椅上,只有三根手指可以活动.1985年,因患肺炎做了穿气管手术,彻底被剥夺了说话的功能,演讲和问答只能通过语音合成器来完成.1972年,他考查黑洞附近的量子效应,发现黑洞会像黑体一样发出辐射,其辐射的温度和黑洞质量成反比,这样黑洞就会因为辐射而慢慢变小,而温度却越变越高,最后以爆炸而告终.黑洞辐射的发现具有极其基本的意义,它将引力、量子力学和统计力学统一在一起.
1974年以后,他的研究转向了量子引力论.虽然人们还没有得到一个成功的理论,但它的一些特征已被发现.例如,空间-时间在普朗克尺度(10^-33厘米)下不是平坦的,而是处于一种粉末的状态.在量子引力中不存在纯态,因果性受到破坏,因此使不可知性从经典统计物理、量子统计物理提高到了量子引力的第三个层次.
  1980年以后,霍金的兴趣转向了量子宇宙论.
然而,2004年7月,他改正了自己原来的“黑洞悖论”观点,信息应该持之以恒
斯蒂芬·威廉·霍金的生平是非常富有传奇性的,在科学成就上,他是有史以来最杰出的科学家之一,他的贡献是在他20年之久被卢伽雷氏症禁锢在轮椅上的情况下做出的,这是真正的空前绝后.他的贡献对于人类的观念有深远的影响,所以媒介早已有许多关于他如何与全身瘫痪作搏斗的描述.所以说,上帝对每个人都是公平的.他有身体上的缺陷,可他的头脑聪明得很!尽管如此,译者(吴忠超)之一于1979年第一回见到他时的情景至今还历历在目.那是第一次参加剑桥霍金广义相对论小组的讨论班时,身后门一打开,脑后忽然响起一种非常微弱的电器的声音,回头一看,只见一个骨瘦如柴的人斜躺在电动轮椅上,他自己驱动着电开关.译者尽量保持礼貌而不显出过分吃惊,但是他对首次见到他的人对其残疾程度的吃惊早已习惯.他要用很大努力才能举起头来.在失声之前,只能用非常微弱的变形的语言交谈,这种语言只有在陪他工作、生活几个月后才能通晓.他不能写字,看书必须依赖于一种翻书页的机器,读文献时必须让人将每一页摊平在一张大办公桌上,然后他驱动轮椅如蚕吃桑叶般地逐页阅读.人们不得不对人类中居然有以这般坚强意志追求终极真理的灵魂从内心产生深深的敬意.从他对译者私事的帮助可以体会到,他是一位富有人情味的人.每天他必须驱动轮椅从他的家——剑桥西路5号,经过美丽的剑河、古老的国王学院驶到银街的应用数学和理论物理系的办公室.该系为了他的轮椅行走便利特地修了一段斜坡.霍金虽然身残但志不残,非常乐观.   他还证明了黑洞的面积定理.在富有学术传统的剑桥大学,他担任的职务是剑桥大学有史以来最为崇高的教授职务,那是牛顿和狄拉克担任过的卢卡斯数学教授.他拥有几个荣誉学位,是最年轻的英国皇家学会会员.在公众评价中,被誉为是继阿尔伯特·爱因斯坦之后最杰出的理论物理学家之一.他提出宇宙大爆炸自奇点开始,时间由此刻开始,黑洞最终会蒸发,在统一20世纪物理学的两大基础理论——爱因斯坦的相对论和普朗克的量子论方面走出了重要一步.   他因患“渐冻症”(肌肉萎缩性侧索硬化症卢伽雷氏症),禁锢在一把轮椅上达40年之久,他却身残志不残,使之化为优势,克服了残废之患而成为国际物理界的超新星.他不能写,甚至口齿不清,但他超越了相对论、量子力学、大爆炸等理论而迈入创造宇宙的“几何之舞”.尽管他那么无助地坐在轮椅上,他的思想却出色地遨游到广袤的时空,解开了宇宙之谜.   霍金的魅力不仅在于他是一个充满传奇色彩的物理天才,也因为他是一个令人折服的生活强者.他不断求索的科学精神和勇敢顽强的人格力量深深地吸引了每一个知道他的人.患有肌肉萎缩性侧索硬化症的他,几乎全身瘫痪,不能发音,但1988年仍出版《时间简史》,至今已出售逾2500万册,成为全球最畅销的科普著作之一.   他被世人誉为“在世的最伟大的科学家”“另一个爱因斯坦”“不折不扣的生活强者”“敢于向命运挑战的人”“宇宙之王”.
丁肇中1936年1月27日生于美国密歇根州安娜堡,先后在重庆、南京和青岛上小学.1948年随父母去台湾,又在台中读了一年小学.1949年丁肇中先考入台北成功中学,次年入台湾建国中学,接受严格的教育,他的数学、物理和历史学习成绩优秀.1955年建国中学高中部毕业,考入成功大学机械工程系.1956年转到美国密歇根大学,在物理系和数学系学习,1960年获硕士学位,1962年获物理学博士学位.1963年,他获得福特基金会的奖学金,到瑞士日内瓦欧洲核子研究中心(CERN)工作.1964年起在美国哥伦比亚大学工作.1965年成为纽约哥伦比亚大学讲师.1967年起任麻省理工学院物理学系教授,1969年任教授.,1977年起任托马斯·达德利·卡伯特讲座教授.1970年任美国物理协会粒子和场研究项目顾问,并任《核物理通报》副主编.1975年当选美国艺术与科学学院院士[1].他是美国科学院院士,研究方向是高能实验粒子物理学,包括量子电动力学、电弱统一理论、量子色动力学的研究.他所领导的马克·杰实验组先后在几个国际实验中心工作.   丁肇中的思维与交流方式极其独特,初次与其交流会让人觉得他思维混乱.但仔细听来就会了解到,他的思维并非混乱,而是他想说的事情过于复杂以至于无法用语言合理表示出来.这点是想必听过他讲座的人都深有体会.
荣誉
  由于丁肇中对物理学的贡献,他在1976年被授予诺贝尔物理奖,并被美国政府授予洛仑兹奖,1988年被意大利政府授予特卡斯佩里科学奖.他是美国国家科学院院士,美国文理科学院院士,苏联科学院外籍院士,中国台北中央研究院院士,巴基斯坦科学院院士.他曾被密歇根大学(1978)、香港中文大学(1987)、意大 丁肇中与妻子
利波洛格那大学(1988)和哥伦比亚大学(1990)授予名誉博士学位.他是中国上海交通大学和北京师范大学的名誉教授,是曲阜师范大学、日照职业技术学院名誉校长.1977年获美国工程科学学会的埃林金奖章,1988年获意大利陶尔米纳市的金豹优秀奖及意大利布雷西亚市的科学金奖章.2005年世界物理年活动日前在欧洲启动.他领导着来自美、法、德、中等14个国家43所一流大学和科研院所的581名物理学家,在日内瓦建造的世界上能量最大的正负质子对撞机上,探索宇宙中的新物质、反物质.
丁肇中的学术思想的特点是,在科学研究中非常重视实验.   他认为,物理学是在实验与理论紧密相互作用的基础上发展起来的,理论进展的基础在于理论能够解释现有的实验事实,并且还能够预言可以由实验证实的新现象.当物理学中一个实验结果与理论预言相矛盾时,就会发生物理学的革命,并且导致新理论的产生.他根据近四分之一世纪以来物理学的历史和他亲身的经验指出,许多重要实验,例如 K介子衰变中电荷共轭宇称与宇称复合对称性(CP)不守恒的发现,J粒子的发现,以及高温超导体的发现,开辟了物理学中新的研究领域,但这些实验发现都是预先在理论上并没有兴趣的情况下作出的.又如高能加速器实验近年来作出的有关粒子物理的基本发现,除W粒子和Z 粒子外,几乎都是在加速器开始建造时未曾预言过的.他强调,没有一个理能够驳斥实验的结果,反之,如果一个理论与实验观察的事实不符合,那么这个理论就不能存在.他重视科学实验的观点,对科学工作者是很有教益的.
发现J粒子,获得诺贝尔物理学奖
  1965年起,丁肇中领导的实验组在联邦德国汉堡电子同步加速器(束流能量为7.5×109eV)上进行了关于量子电动力学和矢量介子(ρ,ω,φ)的一系列出色的实验工作,其中包括光生矢量介子、矢量介子衰变的研究、矢量为主模型的实验检验、ρ、ω、φ介子光生相位的测量和ρ、ω介子干涉参数的精密测量等,推进了对矢量介子的认识(见介子).还在实验上证明了量子电动力学的正确性.   1972年夏,丁肇中实验组利用美国布鲁克海文国家实验室的3.3×1010eV质子加速器寻找质量在(1.5~5.5)×109eV之间的长寿命中性粒子.   1974年,他们发现了一个质量约为质子质量3倍(质量为3.1×109eV)的长寿命中性粒子.在公开发表这个发现时,丁肇中把这个新粒子取名为J粒子,“J”和“丁”字形相近,寓意 丁肇中
这是中国人发现的粒子.与此同时,美国人B.里希特也发现了这种粒子,并取名为ψ粒子.后来(1975)人们就把这种粒子叫作J/ψ粒子.J/ψ粒子具有奇特的性质,其寿命值比预料值大5000倍;这表明它有新的内部结构,不能用当时已知的3种味的夸克来解释,而需要引进第四种夸克即粲夸克来解释.J/ψ粒子的发现大大推动了粒子物理学的发展.为此丁肇中和里希特共同获得1976年诺贝尔物理奖.   当时,新闻界有一个误会:以为J粒子就是“丁粒子”,是丁肇中以姓氏来命名的.其实,这纯属巧合.丁肇中的本意是,想用这个粒子来纪念他们在探索电磁流性质方面,花了10年时间才获得的这项重要新发现.加之物理文献中习惯用J来表示电磁流,因此,丁肇中便以拉丁字母“J”来命名这个新粒子.
量子电动力学
  丁肇中的研究工作以实验粒子物理、量子电动力学及光与物质相互作用为中心.   到目前为止,他在学术上的主要贡献有:(1)反氘核的发现;(2)25年来进行了一系列检验量子电动力学的实验,表明电子、μ子和τ子是半径小于10-16厘米的点粒子;(3)精确研究矢量介子的实验;(4)研究光生矢量介子,证实了光子与矢量介子的相似性;(5)J粒子的发现;(6)μ子对产生的研究;(7)胶子喷注的发现;(8)胶子物理的系统研究;(9)μ子电荷不对称性的精确测量,首次表明标准电弱模型的正确性;(10)在标准模型框架内,证实了宇宙中只存在三代中微子.
热心培养高能物理人才
  1981年起,丁肇中组织和领导了一个国际合作组——L3组,准备在欧洲核子中心预计在1988年建成的高能正负电子对撞机LEP上进行高能物理实验,将在质心系能量为1011eV能区中寻找新粒子,特别是电弱理论预言的黑格斯粒子(见黑格斯机制),并研究Z0及其他粒子物理新现象.L3组目前共有包括中国在内的约13个国家近400名物理学家参加.   丁肇中热心培养中国高能物理学人才,经常选拔中国青年科学工作者去他所领导的小组工作.他是中国科学技术大学等校的名誉教授,中国科学院高能物理研究所学术委员会委员.
领导“阿拉法磁谱仪”实验探索反物质
  1998年6月2日,美东部时间凌晨6时零9分,发现号航天飞机腾空而起,机内载中、美等国共同研制的“阿拉法磁谱仪 丁肇中
”进行运行实验,此举揭开了人类第一次到太空寻找反物质和暗物质的序幕.   阿拉法磁谱仪实验是一个大型国际合作科学实验项目,实验由丁肇中教授领导,包括美国、中国、意大利、瑞士、德国、芬兰等国家和地区的37个研究机构的物理学家和工程师参加,仅中国参加的科学家和工程师就不下200人,其目的是寻找太空中的反物质和暗物质.   这次在航天飞机上运行的“阿拉法磁谱仪”传回的数据,从接收到的1%数据判断,它工作正常,并出现了预想的反质子,但由于数量太少,尚无法说已经发现了反物质.阿拉法磁谱仪将随航天飞机于本月12日返回地面.下一次将在2002年再一次进入太空,并在太空逗留3—5年,今年下半年将组建阿拉法太空站,第一批组件将于1998年11月20日首次进入太空.
求采纳

目前,全世界的科学家都在努力寻找新的超导材料,你知道超导材料的好处和用途 吗?

1911年,荷兰科学家昂内斯(Ones)用液氦冷却汞,当温度下降到4.2K时,水银的电阻完全消失,这种现象称为超导电性,此温度称为临界温度。根据临界温度的不同,超导材料可以被分为:高温超导材料和低温超导材料。但这里所说的「高温」,其实仍然是远低于冰点摄氏0℃的,对一般人来说算是极低的温度。1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。经过科学家们的努力,超导材料的磁电障碍已被跨越,下一个难关是突破温度障碍,即寻求高温超导材料。 1973年,发现超导合金――铌锗合金,其临界超导温度为23.2K,这一记录保持了近13年。 1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧钡铜氧化物)具有35K的高温超导性。此后,科学家们几乎每隔几天,就有新的研究成果出现。 1986年,美国贝尔实验室研究的超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。 1987年,美国华裔科学家朱经武以及中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的“温度壁垒”(77K)也被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从1986-1987年的短短一年多的时间里,临界超导温度提高了近100K。 来自德国、法国和俄罗斯的科学家利用中子散射技术,在高温超导体的一个成员单铜氧层Tl2Ba2CuO6+δ中观察到了所谓的磁共振模式,进一步证实了这种模式在高温超导体中存在的一般性。该发现有助于对铜氧化物超导体机制的研究。高温超导体具有更高的超导转变温度(通常高于氮气液化的温度),有利于超导现象在工业界的广泛利用。高温超导体的发现迄今已有16年,而对其不同于常规超导体的许多特点及其微观机制的研究,却仍处于相当“初级”的阶段。这一点不仅反映在没有一个单一的理论能够完全描述和解释高温超导体的特性,更反映在缺乏统一的、在各个不同体系上普遍存在的“本征”实验现象。本期Science所报道的结果意味着中子散射领域里一个长期存在的困惑很有可能得到解决。早在1991年,法国物理学家利用中子散射技术在双铜氧层YBa2Cu3O6+δ超导体单晶中发现了一个微弱的磁性信号。随后的实验证明,这种信号仅在超导体处于超导状态时才显著增强并被称为磁共振模式。这个发现表明电子的自旋以某种合作的方式产生一种集体的有序运动,而这是常规超导体所不具有的。这种集体运动有可能参与了电子的配对,并对超导机制负责,其作用类似于常规超导体内引起电子配对的晶格振动。但是,在另一个超导体La2-xSrxCuO4+δ(单铜氧层)中,却无法观察到同样的现象。这使物理学家怀疑这种磁共振模式并非铜氧化物超导体的普遍现象。1999年,在Bi2Sr2CaCu2O8+δ单晶上也观察到了这种磁共振信号。但由于Bi2Sr2CaCu2O8+δ与YBa2Cu3O6+δ一样,也具有双铜氧层结构,关于磁共振模式是双铜氧层的特殊表征还是“普遍”现象的困惑并未得到彻底解决。理想的候选者应该是典型的高温超导晶体,结构尽可能简单,只具有单铜氧层。困难在于,由于中子与物质的相互作用很弱,只有足够大的晶体才可能进行中子散射实验。随着中子散射技术的成熟,对晶体尺寸的要求已降低到0.1厘米3的量级。晶体生长技术的进步,也使Tl2Ba2CuO6+δ单晶体的尺寸进入毫米量级,而它正是一个理想的候选者。科学家把300个毫米量级的Tl2Ba2CuO6+δ单晶以同一标准按晶体学取向排列在一起,构成一个“人造”单晶,“提前”达到了中子散射的要求。经过近两个月散射谱的搜集与反复验证,终于以确凿的实验数据显示在这样一个近乎理想的高温超导单晶上也存在磁共振模式。这一结果说明磁共振模式是高温超导的一个普遍现象。而La2-xSrxCuO4+δ体系上磁共振模式的缺席只是“普遍”现象的例外,这可能与其结构的特殊性有关。关于磁共振模式及其与电子间相互作用的理论和实验研究一直是高温超导领域的热点之一,上述结果将引起许多物理学家的关注与兴趣。20世纪80年代是超导电性的探索与研究的黄金年代。1981年合成了有机超导体,1986年缪勒和柏诺兹发现了一种成分为钡、镧、铜、氧的陶瓷性金属氧化物LaBaCuO4,其临界温度约为35K。由于陶瓷性金属氧化物通常是绝缘物质,因此这个发现的意义非常重大,缪勒和柏诺兹因此而荣获了1987年度诺贝尔物理学奖。1987年在超导材料的探索中又有新的突破,美国休斯顿大学物理学家朱经武小组与中国科学院物理研究所赵忠贤等人先后研制成临界温度约为90K的超导材料YBCO(钇铋铜氧)。1988年初日本研制成临界温度达110K的Bi-Sr-Ca-Cu-O超导体。至此,人类终于实现了液氮温区超导体的梦想,实现了科学史上的重大突破。这类超导体由于其临界温度在液氮温度(77K)以上,因此被称为高温超导体。自从高温超导材料发现以后,一阵超导热席卷了全球。科学家还发现铊系化合物超导材料的临界温度可达125K,汞系化合物超导材料的临界温度则高达135K。如果将汞置于高压条件下,其临界温度将能达到难以置信的164K。1997年,研究人员发现,金铟合金在接近绝对零度时既是超导体同时也是磁体。1999年科学家发现钌铜化合物在45K时具有超导电性。由于该化合物独特的晶体结构,它在计算机数据存储中的应用潜力将是非常巨大的。 自2007年12月开始,中国科学院物理研究所的陈根富博士已投入到镧氧铁砷非掺杂单晶体的制备中。今年2月18日,日本东京工业大学的细野秀雄教授和他的合作者在《美国化学会志》上发表了一篇两页的文章,指出氟掺杂镧氧铁砷化合物在零下247.15摄氏度时即具有超导电性。在长期研究中保持着跨界关注习惯的陈根富和王楠林研究员立即捕捉到了这一消息的价值,王楠林小组迅速转向制作掺杂样品,他们在一周内实现了超导并测量了基本物理性质。几乎与此同时,物理所闻海虎研究组通过在镧氧铁砷材料中用二价金属锶替换三价的镧,发现有临界温度为零下248.15摄氏度以上的超导电性。3月25日和3月26日,中国科学技术大学陈仙辉组和物理所王楠林组分别独立发现临界温度超过零下233.15摄氏度的超导体,突破麦克米兰极限,证实为非传统超导。3月29日,中国科学院院士、物理所研究员赵忠贤领导的小组通过氟掺杂的镨氧铁砷化合物的超导临界温度可达零下221.15摄氏度,4月初该小组又发现无氟缺氧钐氧铁砷化合物在压力环境下合成超导临界温度可进一步提升至零下218.15摄氏度。为了证实(超导体)电阻为零,科学家将一个铅制的圆环,放入温度低于Tc=7.2K的空间,利用电磁感应使环内激发起感应电流。结果发现,环内电流能持续下去,从1954年3月16日始,到1956年9月5日止,在两年半的时间内的电流一直没有衰减,这说明圆环内的电能没有损失,当温度升到高于Tc时,圆环由超导状态变正常态,材料的电阻骤然增大,感应电流立刻消失,这就是著名的昂尼斯持久电流实验。1.超导技术谈1911年,荷兰莱顿大学的卡茂林-昂尼斯意外地发现,将汞冷却到-268.98°C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡茂林-昂尼斯称之为超导态。卡茂林由于他的这一发现获得了1913年诺贝尔奖。这一发现引起了世界范围内的震动。在他之后,人们开始把处于超导状态的导体称之为“超导体”。超导体的直流电阻率在一定的低温下突然消失,被称作零电阻效应。导体没有了电阻,电流流经超导体时就不发生热损耗,电流可以毫无阻力地在导线中流大的电流,从而产生超强磁场。1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感兴强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。 后来人们还做过这样一个实验:在一个浅平的锡盘中,放入一个体积很小但磁性很强的永久磁体,然后把温度降低,使锡盘出现超导性,这时可以看到,小磁铁竟然离开锡盘表面,慢慢地飘起,悬空不动。迈斯纳效应有着重要的意义,它可以用来判别物质是否具有超性。 为了使超导材料有实用性,人们开始了探索高温超导的历程,从1911年至1986年,超导温度由水银的4.2K提高到23.22K(OK=-273°C)。86年1月发现钡镧铜氧化物超导温度是30度,12月30日,又将这一纪录刷新为40.2K,87年1月升至43K,不久又升至46K和53K,2月15日发现了98K超导体,很快又发现了14°C下存在超导迹象,高温超导体取得了巨大突破,使超导技术走向大规模应用。超导材料和超导技术有着广阔的应用前景。超导现象中的迈斯纳效应使人们可以到用此原理制造超导列车和超导船,由于这些交通工具将在无摩擦状态下运行,这将大大提高它们的速度和安静性能。超导列车已于70年代成功地进行了载人可行性试验,1987年开始,日本国开始试运行,但经常出现失效现象,出现这种现象可能是由于高速行驶产生的颠簸造成的。超导船已于1992年1月27日下水试航,目前尚未进入实用化阶段。利用超导材料制造交通工具在技术上还存在一定的障碍,但它势必会引发交通工具革命的一次浪潮。超导材料的零电阻特性可以用来输电和制造大型磁体。超高压输电会有很大的损耗,而利用超导体则可最大限度地降低损耗,但由于临界温度较高的超导体还未进入实用阶段,从而限制了超导输电的采用。随着技术的发展,新超导材料的不断涌现,超导输电的希望能在不久的将来得以实现。现有的高温超导体还处于必须用液态氮来冷却的状态,但它仍旧被认为是20世纪最伟大的发现之一。 2.超导技术及其应用 比尔·李 1911年,荷兰科学家昂内斯用液氦冷却水银,当温度下降到4.2K时发现水银的电阻完全消失,这种现象称为超导电性。1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。 超导电性和抗磁性是超导体的两个重要特性。使超导体电阻为零的温度,叫超导临界温度。经过科学家们数十年的努力,超导材料的磁电障碍已被跨越,下一个难关是突破温度障碍,即寻求高温超导材料。 奇异的超导陶瓷 1973年,人们发现了超导合金――铌锗合金,其临界超导温度为23.2K,该记录保持了13年。1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧-钡-铜-氧)具有35K的高温超导性,打破了传统“氧化物陶瓷是绝缘体”的观念,引起世界科学界的轰动。此后,科学家们争分夺秒地攻关,几乎每隔几天,就有新的研究成果出现。 1986年底,美国贝尔实验室研究的氧化物超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。1987年2月,美国华裔科学家朱经武和中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的禁区(77K)也奇迹般地被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从1986-1987年的短短一年多的时间里,临界超导温度竟然提高了100K以上,这在材料发展史,乃至科技发展史上都堪称是一大奇迹! 高温超导材料的不断问世,为超导材料从实验室走向应用铺平了道路。 超群的超导磁体 超导材料最诱人的应用是发电、输电和储能。 由于超导材料在超导状态下具有零电阻和完全的抗磁性,因此只需消耗极少的电能,就可以获得10万高斯以上的稳态强磁场。而用常规导体做磁体,要产生这么大的磁场,需要消耗3.5兆瓦的电能及大量的冷却水,投资巨大。 超导磁体可用于制作交流超导发电机、磁流体发电机和超导输电线路等。 超导发电机 在电力领域,利用超导线圈磁体可以将发电机的磁场强度提高到5万~6万高斯,并且几乎没有能量损失,这种发电机便是交流超导发电机。超导发电机的单机发电容量比常规发电机提高5~10倍,达1万兆瓦,而体积却减少1/2,整机重量减轻1/3,发电效率提高50%。 磁流体发电机 磁流体发电机同样离不开超导强磁体的帮助。磁流体发电发电,是利用高温导电性气体(等离子体)作导体,并高速通过磁场强度为5万~6万高斯的强磁场而发电。磁流体发电机的结构非常简单,用于磁流体发电的高温导电性气体还可重复利用。 超导输电线路 超导材料还可以用于制作超导电线和超导变压器,从而把电力几乎无损耗地输送给用户。据统计,目前的铜或铝导线输电,约有15%的电能损耗在输电线路上,光是在中国,每年的电力损失即达1000多亿度。若改为超导输电,节省的电能相当于新建数十个大型发电厂。 广阔的超导应用 高温超导材料的用途非常广阔,大致可分为三类:大电流应用(强电应用)、电子学应用(弱电应用)和抗磁性应用。大电流应用即前述的超导发电、输电和储能;电子学应用包括超导计算机、超导天线、超导微波器件等;抗磁性主要应用于磁悬浮列车和热核聚变反应堆等。 超导磁悬浮列车 利用超导材料的抗磁性,将超导材料放在一块永久磁体的上方,由于磁体的磁力线不能穿过超导体,磁体和超导体之间会产生排斥力,使超导体悬浮在磁体上方。利用这种磁悬浮效应可以制作高速超导磁悬浮列车。 超导计算机 高速计算机要求集成电路芯片上的元件和连接线密集排列,但密集排列的电路在工作时会发生大量的热,而散热是超大规模集成电路面临的难题。超导计算机中的超大规模集成电路,其元件间的互连线用接近零电阻和超微发热的超导器件来制作,不存在散热问题,同时计算机的运算速度大大提高。此外,科学家正研究用半导体和超导体来制造晶体管,甚至完全用超导体来制作晶体管。 核聚变反应堆“磁封闭体” 核聚变反应时,内部温度高达1亿~2亿℃,没有任何常规材料可以包容这些物质。而超导体产生的强磁场可以作为“磁封闭体”,将热核反应堆中的超高温等离子体包围、约束起来,然后慢慢释放,从而使受控核聚变能源成为21世纪前景广阔的新能源。 科学家新近创造出一种新的物质形态,并预言它将帮助人类做出下一代超导体,以用于发电和提高火车的工作效率等多种用途。这种新的物质形态称作“费密冷凝体”,是已知的第六种物质形态。前五种物质形态分别为气体、固体、液体、等离子体和1995年刚刚发明的玻色一爱因斯坦冷凝体。费密子和玻色子的重大差异,体现在“自旋”这一量子力学特性上。费密子是像电子一样的粒子,有半整数自旋(如1/2,3/2,5/2等);而玻色子是像质子一样的粒子,有整数自旋(如0,1,2等)。这种自旋差异使费密子和玻色子有完全不同的特性。没有任何两个费密子能有同样的量子态:它们没有相同的特性,也不能在同一时间处于同一地点;而玻色子却能够具有相同的特性。因此,1995年物理学家将一定数量铷和钠原子冷却成玻色子时,大部分原子变成了同样的低温量子态,实际上成为单一巨大的整体原子:玻色一爱因斯坦凝聚态。但像钾一40或锂一6这样的费密子,即使在很低的温度下,每种粒子必定也有稍微不同的特性。

求高中物理学史,就是高考理综物理第一题的那个

高中物理学史
一、力学
1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);
2、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。
4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。
5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。
6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
7、17世纪,德国天文学家开普勒提出开普勒三大定律;
8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;
9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;
俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。
11、1957年10月,苏联发射第一颗人造地球卫星;
1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。

二、电磁学
12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。
13、16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。
18世纪中叶,美国人富兰克林提出了正、负电荷的概念。
1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。
14、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。
15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。
16、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。
17、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。
18、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律。
19、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。
20、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。
21、荷兰物理学家洛伦兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛伦兹力)的观点。
22、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。
23、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。
(最大动能仅取决于磁场和D形盒直径,带电粒子圆周运动周期与高频电源的周期相同)
24、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。
25、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。
26、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一。

三、热学
27、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。
28、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。
29、1848年 开尔文提出热力学温标,指出绝对零度是温度的下限。
30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。
21、1642年,科学家托里拆利提出大气会产生压强,并测定了大气压强的值。
四年后,帕斯卡的研究表明,大气压随高度增加而减小。
1654年,为了证实大气压的存在,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验。

四、波动学
22、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。
23、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。
24、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。

五、光学
25、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。
26、1801年,英国物理学家托马斯?杨成功地观察到了光的干涉现象。
27、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射——泊松亮斑。
28、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。
29、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。
30、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。
31、1800年,英国物理学家赫歇耳发现红外线;
1801年,德国物理学家里特发现紫外线;
1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。
32、激光——被誉为20世纪的“世纪之光”。

六、波粒二象性
33、1900年,德国物理学家普朗克为解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的(电磁波的发射和吸收不是连续的),而是一份一份的,每一份就是一个最小的能量单位,即能量子E=hν,把物理学带进了量子世界;
受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。
34、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。
35、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,最先得出氢原子能级表达式,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。
36、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。
37、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;
1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。

七、相对论
38、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界),
②热辐射实验——量子论(微观世界);
39、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。
40、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:
①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;
②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。
狭义相对论的其他结论:
①时间和空间的相对性——长度收缩和动钟变慢(或时间膨胀)
②相对论速度叠加:光速不变,与光源速度无关;一切运动物体的速度不能超过光速,即光速是物质运动速度的极限。
③相对论质量:物体运动时的质量大于静止时的质量。
41、爱因斯坦还提出了相对论中的一个重要结论——质能方程式:E=mc2。

八、原子物理学
42、1858年,德国科学家普吕克尔发现了一种奇妙的射线——阴极射线(高速运动的电子流)。
43、1897年,汤姆生利用阴极射线管发现了电子,指出阴极射线是高速运动的电子流。说明原子可分,有复杂内部结构,并提出原子的枣糕模型。1906年,获得诺贝尔物理学奖。
44、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15 m 。
45、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。
天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。
46、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,
并预言原子核内还有另一种粒子——中子。
47、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。
48、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。
49、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。
50、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。
51、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。
52、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。
53、粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;
轻子-不参与强相互作用的粒子,如:电子、中微子;

相关推荐:

美国物理学家宣称发现室温超导材料,A股概念股爆火券商忙着“反诈”

90后校友未兑现1100万捐赠被母校起诉,知情人:校方曾与他协商过

9岁男孩感染甲流急送ICU,肺部已大片变白……专家紧急提醒:戴口罩!

2023年邯郸中小学暑假放假时间

乌称和谈必须中美在场,美国隐身援武,中国捐款20万欧元保乌核设施

郑开马拉松小马拉松开封段报名费多少钱2023

2023开封小马拉松最新消息

郑开马拉松赛小马拉松开封段报名指南

声明:《美国物理学家宣称发现室温超导材料,A股概念股爆火券商忙着“反诈”》一文由排行榜大全(网友上传 )网友供稿,版权归原作者本人所有,转载请注明出处。如果您对文章有异议,可在反馈入口提交处理!

最近更新

  • 津巴布韦烟草

    津巴布韦处于非洲南部,属于热带草原气候,日照充足且昼夜温差很大,年降水量达600到800毫米,是最适宜优质烟叶生长的天气。除此之外,该国的沙质土壤...

    百科 日期:2023-06-05

  • 美国物理学家宣称发现室温超导材料,A股概念股爆火券商忙着“反诈”

    极目新闻记者 陈俊据Sciencenews报道,美国太平洋时间3月7日,纽约罗彻斯特大学的Ranga Dias及其团队在拉斯维加斯举行的美国物理学会会议上宣...

    八卦 日期:2023-06-05

  • 哪种材质的菜板比较好

    1、首先木质菜板是非常普遍的选择,木质为天然材质,用天然木材生产的砧板最为中国家庭所接受,尤其是对于喜爱传统中式菜肴的家庭,木质砧板更是必...

    百科 日期:2023-06-05

  • 汽车隐形车衣怎么选购

    1、看隐形车衣的透明度,好的隐形车衣透明度会比较高,因为透明度越高越不会影响到车漆原来的颜色,还可以提升车漆的光泽度。2、用手摸一摸隐形...

    汽车 日期:2023-06-05

  • 津巴韦布是国家么

    津巴布韦共和国,简称津巴布韦,是非洲南部的内陆国家,1980年4月18日独立建国。津巴布韦在1980年之前原本称为罗得西亚,这名字源自于替英国在这地...

    百科 日期:2023-06-05

  • 2023广州清明节消费券怎么领?

    2023广州清明节消费券怎么领? 2023年南沙区文旅体消费券惠民活动 ▶获券方法:1.转盘抽券 ①点击进入抽奖页面,每人每天可获得3次抽券机会;②参...

    景点 日期:2023-06-05

  • 雪中悍刀行张巨鹿为什么要被诛九族

    《雪中悍刀行》中一个非常让人佩服的角色是张巨鹿,《雪中悍刀行》张巨鹿的历史原型是谁 张巨鹿原型人物有几个?张巨鹿尽管一心一意为离阳办事...

    电影 日期:2023-06-05

  • 90后校友未兑现1100万捐赠被母校起诉,知情人:校方曾与他协商过

    极目新闻记者 舒隆焕中国矿业大学90后校友吴幽,2019年4月宣布向母校捐赠1100万元。因未履行1100万元捐赠承诺,吴幽被母校基金会告上法庭,成为...

    八卦 日期:2023-06-05

邮箱不能为空
留下您的宝贵意见