> 首页 > 生活 > 百科 > 平面连杆机构的尺寸综合

平面连杆机构的尺寸综合

来源:网络 作者:佚名 时间:03-25 手机版

尺寸综合的主要方法有解析法、图解法和实验法。

1、解析法:以函数逼近论为基础的代数法。这种方法精度高,计算繁复,但随着电子计算机的应用和向量、复数与矩阵等数学手段的运用,60年代以来发展很快,常用的有插值法、平方逼近法、最佳逼近法等。

2、图解法:以运动几何学为基础的几何方法。这种方法概念明确、简单,能以一定精度求解相当范围的问题,但精度不如解析法高,常用的有运动几何法和在其基础上提出的半角转动法等。

3、实验法:用不同机构参数的模型通过反复实验求解机构的尺寸。<

平面连杆机构运动设计有那些问题和解决方法?

机构运动设计是根据机械的设计任务和要求,拟定机械中各机构的方案,利用机械原理课程的理论知识,对该机构方案进行结构分析、运动分析和动力分析,从而设计出满足使用要求、经济可靠、运动性能和动力性能优异的机构。
平面连杆机构运动设计:
(一)基本问题
平面连杆机构运动设计的任务是:在运动方案设计(即型综合)的基础上,根据机构所要完成的功能运动所提出的设计条件(运动条件、几何条件和传力条件等)确定机构的运动学尺寸(一般又称尺度综合),画出机构运动简图。这里所说的运动学尺寸包括各运动副之间的相对位置尺寸(或角度)以及描绘连杆上某点(该点实现给定运动轨迹)的位置参数等。
在进行平面连杆机构的运动设计时,除了要考虑上述各种功能运动要求外,往往还有一些其他要求,如:
(1)要求某连架杆为曲柄;
(2)要求机构运动具有连续性;
(3)要求最小传动角在许用传动角范围内,即要求rmin>[r],以保证机构有良好的传力条件;
(4)特殊的运动性能要求。如要求机构输出件有急回特性;要求二连架杆角速度和角加速度满足给定条件等。
根据以上分析,可将平面连杆机构运动设计的问题概括成下述基本问题:
(1)实现已知运动规律问题,如前述实现刚体导引及函数生成功能的问题,要求机构输出件有急回特性等问题,其实质均是要求实现已知运动规律问题。
(2)实现已知轨迹问题:要求机构中作复杂运动的构件上的某一点准确地或近似地沿给定轨迹运动。前述实现轨迹生成功能的问题即属此类问题。
(二)设计方法
(1)实验法
用作图试凑或利用图谱、表格及模型实验等来求得机构运动学参数。此种方法直观简单,但精度较低,适用于精度要求不高的设计或参数预选。
(2)几何法
根据几何学原理,用几何作图法求解运动学参数的方法。该法直观、易懂,求解速度一般较快,但精度不高。适于简单问题或对精度要求不高的问题求解。
(3)解析法
这种方法是以机构参数来表达各构件间的函数关系,以便按给定条件求解未知数。此法求解精度高,能解决较复杂的问题。随着电子计算机的广泛应用,这种方法正在得到逐步推广。

2018-08-20 平面连杆机构

2.1 平面四杆机构的基本类型及其应用

2.1.1 铰链四杆机构

所有运动副均为转动副的平面四杆机构称为铰链四杆机构,它是平面四杆机构的最基本形式,其它形式的平面四杆机构都可以看做是在它的基础上演化而成的。若组成转动副的两构件做整周相对运动,则该转动副称为整转副,否则称为摆转副。能够整周转动的连架杆称为曲柄,否则称为摇杆或摆杆。因此,铰链四杆机构可以分为三种基本形式:曲柄摇杆机构、双曲柄机构、双摇杆机构。

曲柄摇杆机构能够实现整周转动与往复摆动之间的转换。如果曲柄为主动件,则将曲柄的等速整周转动转为摇杆的不等速往复摆动,反之亦可。

在双曲柄机构中,当一个曲柄做等速转动时,另一个曲柄一般做变速转动。

2.1.2 含有一个移动副的四杆机构

移动副可以看作是由转动副演化而来的。,如果R加大到无穷大圆弧槽变为直径,这时,滑块做往复直线运动,从而转动副演化为移动副,曲柄摇杆机构演化为含有移动副的四杆机构。

2.1.3 含有两个移动副的四杆机构

如果将曲柄滑块机构中的滑块改为导杆,可以形成移动导杆机构,根据几何关系,该机构又称为正弦机构。在正弦机构的基础上,还可以演化出双砖块机构、双移块机构和正切机构。

2.1.4 偏心轮机构

曲柄滑块机构或其他含有曲柄的四杆机构中,如果曲柄长度很短,则在曲柄两端安装两个转动副存在结构设计上的困难,同时还存在运动干涉的情况。因此,工程中常常将曲柄设计成偏心距为曲柄长的偏心圆盘,此偏心圆盘称为偏心轮。

2.2 平面四杆机构的基本特性

2.2.1 平面四杆机构有曲柄的条件

杆长之和条件,最短杆与最长杆之和小于等于其余两边之和。

铰链四杆机构具有曲柄的条件是满足杆长之和条件,同时整转副处于最短杆两端。

当铰链四杆机构满足杆长之和条件时,可根据哪个杆作为机架判断出铰链四杆机构的类型:

最短杆邻边作为机架,最短杆为曲柄,一个整转副在机架上,机构为曲柄摇杆机构;

最短杆为机架,两个整转副均在机架上,机构为双曲柄机构;

最短杆的对边为机架,两个整转副都不在机架上,机构为双摇杆机构。

当铰链四杆机构不满足杆长之和条件时,该机构没有曲柄亦无整转副,无论哪个杆作为机架,均为双摇杆机构。

对于最短杆与最长杆之和等于其余两杆之和,情况略有不同。如平行四边形机构,两个最短杆相等且为对边形式,因此该机构四个转动副均为整转副,这时无论哪个杆件作为机架该机构均为双曲柄机构。

对于有滑块的四杆机构来说,上述结论仍然适用。

2.2.2 急回特性和行程速比变化系数

机器运转过程中,往复运动的构件在工作行程和空回行程的位移量是相同的,均为极限位置之间的区间,但所需时间一般不相等,工程中往往需要缩短空回行程的时间以提高机器工作效率,这样两个行程的平均速度也就不相等。这种现象称为机构的急回特性。为了反映机构急回特性的相对程度,引入了从动件行程速度变化系数,用K表示,其值为:K=从动件快行程平均速度/从动件慢行程平均速度。

K=Π+θ/Π-θ,或θ=Π·(K-1/K+1)。因此,机构的急回特性也可以用θ角来表示。由于θ角与从动件极限位置对应的曲柄位置有关,故称为极位夹角。对于曲柄摇杆机构,极位夹角与机构尺寸有关,其一般范围为[0,180)。

一般情况下,曲柄滑块机构极位夹角小于90度,其中对心曲柄滑块机构极位夹角为0度(行程速度变化系数等于1)。摆动导杆机构的极位夹角范围为(0,180),并有极位夹角与摆角相等的特点,导杆慢选种摆动方向总与曲柄转向相同。

2.2.3 压力角和传动角

曲柄摇杆机构中,如果不考虑重力、惯性以及运动副中摩擦力的影响,当曲柄2为原动件时,通过连杆3(可以看做是二力杆)作用于从动件4上的力F是沿二力杆BC的方向,从动件CD受到的驱动力F与力的作用点C的速度Vc之间所夹的锐角,称为压力角。压力角越小,力F在速度Vc方向上的有效分力越大,力的有效利用程度越好。习惯上用压力角的余角来判断传力性能,称为传动角,传动角越大,机构传力性能越好。

当机构运动时,其传动角的大小一般是变化的,为了保证机构传动良好,设计时通常应使最小传动角大于等于40,对于高速和大功率的传动机械,应使最小传动角大于等于50.因此,需要确定传动角等于最小传动角时的机构位置,并检验是否符合上述许用要求。

当曲柄与机架两次共线时,传动角可以取极值,其值为:cos δmin = l₃²+l4²-(l₁-l₂)² / 2l₃l4;cos δmax = l₃²+l4²-(l₁+l₂)² / 2l₃l4。通过公式求出传动角的两个极值,可以计算出两个传动角,其中较小的一个即为该机构的最小传动角。

在曲柄滑块机构中,当曲柄为原动件时,最小传动角发生在曲柄与滑块导路垂直位置。在摆动导杆机构中,当导杆为从动件时,由于二力杆传力方向始终垂直于导杆,因此压力角和传动角值不变。

2.2.4 死点

2.2.2中的机构,如果摇杆CD为原动件,曲柄AB为从动件,当摇杆摆动到极限位置时,连杆BC与从动件AB共线,这时从动件的传动角为0,压力角为90,连杆加于从动件上有效分力为0.机构的这种传动角为0的位置称为死点位置。四杆机构是否存在死点位置,取决于连杆能否与转动从动件共线或与移动从动件导路垂直。

除曲柄摇杆机构和曲柄滑块机构外,如摆动导杆机构,也存在死点位置。

在工程中,有时也利用死点位置来实现一定的工作要求。

2.3 平面四杆机构的设计

2.3.1 实现连杆给定位置的平面四杆机构运动设计

连杆位置用铰链中心B和C表示。连杆通过三个预期位置,分别为B₁C₁,B₂C₂,B₃C₃,图解法设计过程如下:

机构运动过程中,以固定铰链中心A为圆心,AB杆长度为半径做圆弧,则必有B₁,B₂,B₃点在圆弧上,因此以B₁,B₂,B₃点中任意两点做两次中垂线,其交点为固定铰链A的中心;

同上原理,可以画出固定铰链D的中心位置;

依次连接A,B₁,C₁,D即为满足要求的铰链四杆机构。

如果B₁,B₂,B₃点或C₁,C₂,C₃点共线,会设计出一个含有移动副的四杆机构。

由于是实现连杆的三个位置,因此设计出的四杆机构是惟一的,如果仅给定连杆的两个位置,则可以有无穷多个满足要求的四杆机构。

2.3.2 实现给定行程速度变化系数的平面四杆机构设计

给定行程速度变化系数K、摆杆Lcd的长度和摆杆摆角ψ设计铰链四杆机构,设计过程如下:

根据行程速度变化系数K计算出极位夹角θ;

选取适当比例尺,画出固定铰链中心D的位置,由摆杆长度和摆杆摆角ψ画出摆杆两个极限位置;

做∠C₁C₂O=90°-θ,O点在C₁C₂中垂线上,以O为圆心,C₁O为半径作圆;

选取圆上任一点为固定铰链中心A;

曲柄AB与连杆BC长度之和应为AC₂长度,连杆BC与曲柄AB长度之差为AC₁长度,画出A为圆心,Lab为半径的圆;

AB₁C₁D即为摇杆处于极限位置时的铰链四杆机构;

由于A点是任意选取的,因此满足本要求的设计有无穷多的解。
给定行程速度变化系数K、滑块行程s和偏置e设计偏置曲柄滑块机构。设计过程如下:

根据行程速度变化系数K计算出极位夹角θ;

选取适当比例尺,根据滑块极限位置C₁C₂,由同上设计作出圆心O与辅助圆;

根据e画出固定铰链中心A;

曲柄AB与连杆BC长度之和应为AC₂长度,连杆BC与曲柄AB长度之差应为AC₁长度,画出A为圆心Lab为半径的圆;

ABC即为设计的曲柄滑块机构。

2.3.3 实现已知运动轨迹的平面四杆机构运动设计

解析法:

铰链四杆机构中,由于连架杆上任意一点的轨迹都是圆弧,连杆上除铰链中心点外才可能实现复杂的运动轨迹,因此一般而言已知的运动轨迹是指连杆上的某一点。设计过程如下:

建立直角坐标系,在坐标系中固定铰链中心A,有两个尺寸参数;

在坐标系中固定铰链中心D,有两个待定尺寸参数;

设连架杆和连杆长度,由三个待定尺寸参数;

设E点相对连杆BC的固定位置,由两个待定尺寸参数;

共有9个待定尺寸参数,因此铰链四杆机构中连杆点最多可以精确通过给定轨迹上所选的9个点,代入得到9个非线性方程,最终求得机构的9个待定尺寸参数。
图谱法:

利用编纂汇集的连杆曲线图册来设计平面连杆机构,首先在图册中找到与E点曲线最相似的轨迹,然后求出放大倍数,即可得到机构的真实尺寸参数。图谱法可以使设计过程大大简化。

平面连杆机构的基本问题

平面连杆机构的运动设计一般可归纳为以下三类基本问题:
1) 实现构件给定位置(亦称刚体导引),即要求连杆机构能引导某构件按规定顺序精确或近似地经过给定的若干位置。
2) 实现已知运动规律(亦称函数生成),即要求主、从动件满足已知的若干组对应位置关系,包括满足一定的急回特性要求,或者在主动件运动规律一定时,从动件能精确或近似地按给定规律运动。
3) 实现已知运动轨迹(亦称轨迹生成),即要求连杆机构中作平面运动的构件上某一点精确或近似地沿着给定的轨迹运动。
在进行平面连杆机构运动设计时,往往是以上述运动要求为主要设计目标,同时还要兼顾一些运动特性和传力特性等方面的要求,如整转副要求、压力角或传动角要求、机构占据空间位置要求等。另外,设计结果还应满足运动连续性要求,即当主动件连续运动时,从动件也能连续地占据预定的各个位置,而不能出现错位或错序等现象。
平面连杆机构运动设计的方法主要是几何法和解析法,此外还有图谱法和模型实验法。几何法是利用机构运动过程中各运动副位置之间的几何关系,通过作图获得有关运动尺寸,所以几何法直观形象,几何关系清晰,对于一些简单设计问题的处理是有效而快捷的,但由于作图误差的存在,所以设计精度较低。解析法是将运动设计问题用数学方程加以描述,通过方程的求解获得有关运动尺寸,故其直观性差,但设计精度高。随着数值计算方法的发展和计算机的普及应用,解析法已成为各类平面连杆机构运动设计的一种有效方法。

平面连杆机构是什么?

1 铰链四杆机构

如图1-22所示为一种常见的脚踏缝纫机,当脚踏动踏板1时,摇动的踏板通过连杆2可驱动皮带轮3旋转,以此把旋转的动力供应给缝纫机头工作。缝纫机踏板、连杆、皮带轮所组成的传动装置,是一种典型的平面连杆机构,称作曲柄摇杆机构,它能将摇动的运动形式转换成旋转的运动形式,反之也能将皮带轮的旋转运动转换为踏板的摇动,如图1-23所示,当AB杆360°旋转能通过BC杆驱动杆件CD围绕D点在一定范围内摆动。

图1-22 脚踏缝纫机运动简图

1—踏板;2—连杆;3—皮带轮;4—机架

图1-23 曲柄摇杆机构运动简图

1—曲柄;2—连杆;3—摇杆;4—机架

图1-23是按一定比例的直线、曲线及简单的符号,来表示机构各构件间相对运动关系和运动规律的简图,称之为机构运动简图,是对具体事物的抽象。在机构中,构件与构件之间的连接部位被称为运动副,如AB与BC杆件连接处的小圆圈称为回转副或铰链,表示AB杆件和BC杆件可以相对转动。其中,AB杆能够绕转动副A轴线360°转动,称其为曲柄;CD杆仅能绕其转动副轴线往复摆动,称其为摇杆;AD杆是固定不动的杆件,起支撑作用,称其为机架;BC杆件因不与机架连接,称其为连杆。

当机架杆件长度相对其他杆件长度发生改变时,得到的运动形式又将不同,如图1-24(a)和(b)所示,分别为双曲柄机构和双摇杆机构。在双曲柄机构中,主动件和从动件均为曲柄,主动曲柄等速旋转,而从曲柄变速旋转;在双摇杆机构中,杆件AB和CD仅能产生摆动。曲柄摇杆机构、双曲柄机构和双摇杆机构统称为铰链四杆机构,是平面连杆机构最基本的类型。

图1-24 双曲柄机构和双摇杆机构

曲柄摇杆机构在工业中有普遍的应用,如图1-25所示为目前石油开采广泛使用的游梁抽油机结构及机构运动示意图,其工作原理是电动机通过带轮和减速器减速带动曲柄OA转动,曲柄OA带动连杆O1B驱动游梁绕支架作上下摆动,驴头上悬绳器拉动抽油杆上下运动,拉动井底抽油泵中活塞进行抽吸原油,并将原油排出地面。

图1-25 游梁抽油机结构及机构运动示意图

机械中存在的诸多连杆机构基本上都是通过四杆机构演化而来的,如图1-26(a)所示,挖掘机一系列挖掘和提升的动作是几个连杆机构综合运动的结果,其中液压缸是长度可变的杆件,担负着驱动的任务;图1-26(b)的测量仪表是连杆机构与齿轮机构的组合,通过移动左边的滑块就能使大齿轮转动,以此带动小齿轮及指针旋转,达到显示测量结果的目的。

图1-26 连杆机构的应用实例

2 曲柄滑块机构

如图1-27所示为单缸四冲程汽油机构造示意图,发动机工作时气体燃烧的膨胀力将驱动活塞在气缸内直线移动,然后通过连杆驱动曲轴(即曲柄)做旋转运动,发动机由此进行旋转动力的输出。气缸、活塞、连杆、曲轴所组成的机构称为曲柄滑块机构,图1-28为曲柄滑块机构运动简图,此种机构是通过曲柄摇杆机构演化而来的,它能将旋转运动转化为直线往复移动的运动形式,在工程领域,压力机、活塞式空气压缩机均是以此机构为原理进行设计和制造的。若继续将此机构进行演化,可得手动抽水机机构,如图1-29所示。

图1-27 单缸四冲程汽油机构造示意图

1—气缸盖;2—气缸;3—活塞;4—连杆;5—飞轮;6—曲轴;7—曲轴箱;8,9—齿轮;10,11—凸轮;12—活塞销;13—进气门;14—排气门

平面四连杆机构的基本形式都有哪些?

根据平面四连杆机构中是否存在曲柄,有一个曲柄或两个曲柄,可把它分为下面三种基本形式。

1,曲柄摇杆机构

2,双曲柄机构:平面四连杆机构中若有两个曲柄存在,这样的机构称为双曲柄机构。这种机构一般可将主动件的匀速整周转动转换成从动件的非匀速或匀速整周转动。

双曲柄机构中,若两曲柄的长度相等,且连杆与静件的长度也相等,则此机构为平行四边形机构。其运动特点是两曲柄的角速度始终保持相等,连杆在运动过程中始终作平行移动。若改变平行四边形机构,使其两个曲柄转动方向相反,这时的机构称为反向双曲柄机构。

3,双摇杆机构:在平面四连杆机构中,若与静件相联的两杆件均为摇杆,则此机构称为双摇杆机构。

扩展资料:

定理

1,杆长之和条件:平面四杆机构的最短杆和最长杆的长度之和小于或者等于其余两杆长度之和。

2,在铰链四杆机构中,如果某个转动副能够成为周转副,则它所连接的两个构件中,必有一个为最短杆,并且四个构件的长度关系满足杆长之和条件。

3,在有整装副存在的铰链四杆机构中,最短杆两端的转动副均为周转副。此时,如果取最短杆为机架,则得到双曲柄机构;若取最短杆的任何一个相连杆为机架,则得到曲柄摇杆机构;如果取最短杆对面构件为机架,则得到双摇杆机构。

4,如果四杆机构不满足杆长条件,则不论选取哪个构件为机架,所得到机构均为双摇杆机构。

上述系列结论称为格拉霍夫定理。

参考资料来源:百度百科-平面四杆机构

机械设计:平面连杆机构

(1)若此机构为曲柄摇杆机构,AB杆长度的取值范围。
该机构若为曲柄摇杆机构,则AB应为最短杆, 已知BC杆为最长杆50
AB+BC≤AD+CD
AB+50≤30+35
AB≤15
AB杆长度的取值范围是0<AB≤15
(2)若此机构为双曲柄机构,AB杆长度的取值范围。
该机构欲成为双曲柄机构,同样应满足曲柄存在的条件,且应以最短杆为机架。现AD为机架,则只能是AD为最短杆,则最长杆可能为BC杆,也可能是AB杆。
假如BC杆为最长杆
AD+BC≤AB+CD
30+50≤AB+35
AB≥45
AB杆长度的取值范围是45≤AB<50
假如AB是最长杆
AD+AB≤BC+CD
30+AB≤50+35
AB≤55
AB杆长度的取值范围是50<AB≤55

平面连杆机构有哪些

1.平面连杆机构的类型 平面连杆机构是许多构件用低副(转动副或移动副)连接组成的平面机构。最简单的平面连杆机构是由四个构件组成的,称为平面四杆机构。全部用转动副相连的平面四杆机构称为平面铰链四杆机构,简称铰链四杆...
2.平面连杆机构的特性 ●急回运动特性; ●死点位置; ● 压力角:用在从动件上的驱动力与该力作用点的绝对速度之间所夹的锐角称为压力角。压力角越小,有效分力越大,即压力角可作为判断机构传动性能的标志。 ●传动角

机械原理中的连杆机构分析!!!

第二章 平面连杆机构
案例导入:通过雷达天线、汽车雨刮器、搅拌机等实际应用的机构分析引入四杆机构的概念,介绍四杆机构的组成、基本形式和工作特性。
第一节 铰链四杆机构
一、铰链四杆机构的组成和基本形式
1.铰链四杆机构的组成
如图1-14所示,铰链四杆机构是由转动副将各构件的头尾联接起的封闭四杆系统,并使其中一个构件固定而组成。被固定件4称为机架,与机架直接铰接的两个构件1和3称为连架杆,不直接与机架铰接的构件2称为连杆。连架杆如果能作整圈运动就称为曲柄,否则就称为摇杆。
2.铰链四杆机构的类型
铰链四杆机构根据其两个连架杆的运动形式的不同,可以分为曲柄摇杆机构、双曲柄机构和双摇杆机构三种基本形式。
(1)曲柄摇杆机构。在铰链四杆机构中,如果有一个连架杆做循环的整周运动而另一连架杆作摇动,则该机构称为曲柄摇杆机构。如图2-1所示曲柄摇杆机构,是雷达天线调整机构的原理图,机构由构件AB、BC、固连有天线的CD及机架DA组成,构件AB可作整圈的转动,成曲柄;天线3作为机构的另一连架杆可作一定范围的摆动,成摇杆;随着曲柄的缓缓转动,天线仰角得到改变。如图2-2所示汽车刮雨器,随着电动机带着曲柄AB转动,刮雨胶与摇杆CD一起摆动,完成刮雨功能。如图2-3所示搅拌器,随电动机带曲柄AB转动,搅拌爪与连杆一起作往复的摆动,爪端点E作轨迹为椭圆的运动,实现搅拌功能。
(2)双曲柄机构。在铰链四杆机构中,两个连架杆均能做整周的运动,则该机构称为双曲柄机构。如图2-4所示惯性筛的工作机构原理,是双曲柄机构的应用实例。由于从动曲柄3与主动曲柄1的长度不同,故当主动曲柄1匀速回转一周时,从动曲柄3作变速回转一周,机构利用这一特点使筛子6作加速往复运动,提高了工作性能。当两曲柄的长度相等且平行布置时,成了平行双曲柄机构,如图2-5a)所示为正平行双曲柄机构,其特点是两曲柄转向相同和转速相等及连杆作平动,因而应用广泛。火车驱动轮联动机构利用了同向等速的特点;路灯检修车的载人升斗利用了平动的特点,如图2-6a、b)所示。如图2-5b)为逆平行双曲柄机构,具有两曲柄反向不等速的特点,车门的启闭机构利用了两曲柄反向转动的特点,如图2-6c)所示。
(3)双摇杆机构。两根连架杆均只能在不足一周的范围内运动的铰链四杆机构称为双摇杆机构。如图2-7所示为港口用起重机吊臂结构原理。其中,ABCD构成双摇杆机构,AD为机架,在主动摇杆AB的驱动下,随着机构的运动连杆BC的外伸端点M获得近似直线的水平运动,使吊重Q能作水平移动而大大节省了移动吊重所需要的功率。图2-8所示为电风扇摇头机构原理,电动机外壳作为其中的一根摇杆AB,蜗轮作为连杆BC,构成双摇杆机构ABCD。蜗杆随扇叶同轴转动,带动BC作为主动件绕C点摆动,使摇杆AB带电动机及扇叶一起摆动,实现一台电动机同时驱动扇叶和摇头机构。图2-9所示的汽车偏转车轮转向机构采用了等腰梯形双摇杆机构。该机构的两根摇杆AB、CD是等长的,适当选择两摇杆的长度,可以使汽车在转弯时两转向轮轴线近似相交于其它两轮轴线延长线某点P,汽车整车绕瞬时中心P点转动,获得各轮子相对于地面作近似的纯滚动,以减少转弯时轮胎的磨损。
二、铰链四杆机构中曲柄存在的条件
1.铰链四杆机构中曲柄存在的条件
铰链四杆机构的三种基本类型的区别在于机构中是否存在曲柄,存在几个曲柄。机构中是否存在曲柄与各构件相对尺寸的大小以及哪个构件作机架有关。可以证明,铰链四杆机构中存在曲柄的条件为:
条件一:最短杆与最长杆长度之和不大于其余两杆长度之和。
条件二:连架杆或机架中最少有一根是最短杆。
2.铰链四杆机构基本类型的判别准则
(1)满足条件一但不满足条件二的是双摇杆机构;
(2)满足条件一而且以最短杆作机架的是双曲柄机构;
(3)满足条件一而且最短杆为连架杆的是曲柄摇杆机构;
(4)不满足条件一是双摇杆机构。
【实训例2-1】 铰链四杆机构ABCD如图2-10所示。请根据基本类型判别准则,说明机构分别以AB、BC、CD、AD各杆为机架时属于何种机构。
解:经测量得各杆长度标于图2-10,分析题目给出铰链四杆机构知,最短杆为AD = 20,最长杆为CD = 55,其余两杆AB = 30、BC = 50。
因为 AD+CD = 20+55 = 75
AB+BC = 30+50 = 80 > Lmin+Lmax
故满足曲柄存在的第一个条件。
1)以AB或CD为机架时,即最短杆AD成连架杆,故为曲柄摇杆机构;
2)以BC为机架时,即最短杆成连杆,故机构为双摇杆机构;
3)以AD为机架时,即以最短杆为机架,机构为双曲柄机构。
第二节 平面四杆机构的其它形式
一、曲柄滑块机构
在图2-11a)所示的铰链四杆机构ABCD中,如果要求C点运动轨迹的曲率半径较大甚至是C点作直线运动,则摇杆CD的长度就特别长,甚至是无穷大,这显然给布置和制造带来困难或不可能。为此,在实际应用中只是根据需要制作一个导路,C点做成一个与连杆铰接的滑块并使之沿导路运动即可,不再专门做出CD杆。这种含有移动副的四杆机构称为滑块四杆机构,当滑块运动的轨迹为曲线时称为曲线滑块机构,当滑块运动的轨迹为直线时称为直线滑块机构。直线滑块机构可分为两种情况:如图2-11b)所示为偏置曲柄滑块机构,导路与曲柄转动中心有一个偏距e;当e = 0即导路通过曲柄转动中心时,称为对心曲柄滑块机构,如图2-11c)所示。由于对心曲柄滑块机构结构简单,受力情况好,故在实际生产中得到广泛应用。因此,今后如果没有特别说明,所提的曲柄滑块机构即意指对心曲柄滑块机构。
应该指出,滑块的运动轨迹不仅局限于圆弧和直线,还可以是任意曲线,甚至可以是多种曲线的组合,这就远远超出了铰链四杆机构简单演化的范畴,也使曲柄滑块机构的应用更加灵活、广泛。
图2-12所示为曲柄滑块机构的应用。图2-12a)所示为应用于内燃机、空压机、蒸汽机的活塞-连杆-曲柄机构,其中活塞相当于滑块。图2-12b)所示为用于自动送料装置的曲柄滑块机构,曲柄每转一圈活塞送出一个工件。当需要将曲柄做得较短时结构上就难以实现,通常采用图2-12c)所示的偏心轮机构,其偏心圆盘的偏心距e就是曲柄的长度。这种结构减少了曲柄的驱动力,增大了转动副的尺寸,提高了曲柄的强度和刚度,广泛应用于冲压机床、破碎机等承受较大冲击载荷的机械中。
二、导杆机构
在对心曲柄滑块机构中,导路是固定不动的,如果将导路做成导杆4铰接于A点,使之能够绕A点转动,并使AB杆固定,就变成了导杆机构,如图2-13所示。当AB<BC时,导杆能够作整周的回转,称旋转导杆机构,如图2-13a=所示。当AB>BC时导杆4只能作不足一周的回转,称摆动导杆机构,如图2-13b)所示。
导杆机构具有很好的传力性,在插床、刨床等要求传递重载的场合得到应用。如图2-14a)所示为插床的工作机构,如图2-14b)所示为牛头刨床的工作机构。
三、摇块机构和定块机构
在对心曲柄滑块机构中,将与滑块铰接的构件固定成机架,使滑块只能摇摆不能移动,就成为摇块机构,如图2-15a)所示。摇块机构在液压与气压传动系统中得到广泛应用,如图2-15b)所示为摇块机构在自卸货车上的应用,以车架为机架AC,液压缸筒3与车架铰接于C点成摇块,主动件活塞及活塞杆2可沿缸筒中心线往复移动成导路,带动车箱1绕A点摆动实现卸料或复位。将对心曲柄滑块机构中的滑块固定为机架,就成了定块机构,如图2-16a)所示。图2-16b)为定块机构在手动唧筒上的应用,用手上下扳动主动件1,使作为导路的活塞及活塞杆4沿唧筒中心线往复移动,实现唧水或唧油。表2-1给出了铰链四杆机构及其演化的主要型式对比。
第三节 平面四杆机构的工作特性
一、运动特性
在图2-17所示的曲柄摇杆机构中,设曲柄AB为主动件。曲柄在旋转过程中每周有两次与连杆重叠,如图2-17中的B1AC1和AB2C2两位置。这时的摇杆位置C1D和C2D称为极限位置,简称极位。C1D与C2D的夹角 称为最大摆角。曲柄处于两极位AB1和AB2的夹角锐角θ称为极位夹角。设曲柄以等角速度ω1顺时针转动,从AB1转到AB2和从AB2到AB1所经过的角度为(π+θ)和(π-θ),所需的时间为t1和t2 ,相应的摇杆上C点经过的路线为C1C2弧和C2C1弧,C点的线速度为v1和v2 ,显然有t1>t2 ,v1<v2 。这种返回速度大于推进速度的现象称为急回特性,通常用v1与v2的比值K来描述急回特性,K称为行程速比系数,即
K= (2-1)
或有 (2-2)
可见,θ越大K值就越大,急回特性就越明显。在机械设计时可根据需要先设定K值,然后算出θ值,再由此计算得各构件的长度尺寸。
急回特性在实际应用中广泛用于单向工作的场合,使空回程所花的非生产时间缩短以提高生产率。例如牛头刨床滑枕的运动。
二、传力特性
1.压力角和传动角
在工程应用中连杆机构除了要满足运动要求外,还应具有良好的传力性能,以减小结构尺寸和提高机械效率。下面在不计重力、惯性力和摩擦作用的前提下,分析曲柄摇杆机构的传力特性。如图2-18所示,主动曲柄的动力通过连杆作用于摇杆上的C点,驱动力F必然沿BC方向,将F分解为切线方向和径向方向两个分力Ft和Fr ,切向分力Ft与C点的运动方向vc同向。由图知
Ft = F 或 Ft = F
Fr = F 或 Fr = F
α角是Ft与F的夹角,称为机构的压力角,即驱动力F与C点的运动方向的夹角。α随机构的不同位置有不同的值。它表明了在驱动力F不变时,推动摇杆摆动的有效分力Ft的变化规律,α越小Ft就越大。
压力角α的余角γ是连杆与摇杆所夹锐角,称为传动角。由于γ更便于观察,所以通常用来检验机构的传力性能。传动角γ随机构的不断运动而相应变化,为保证机构有较好的传力性能,应控制机构的最小传动角γmin。一般可取γmin≥40°,重载高速场合取γmin≥50°。曲柄摇杆机构的最小传动角出现在曲柄与机架共线的两个位置之一,如图2-18所示的B1点或B2点位置。
偏置曲柄滑块机构,以曲柄为主动件,滑块为工作件,传动角γ为连杆与导路垂线所夹锐角,如图2-19所示。最小传动角γmin出现在曲柄垂直于导路时的位置,并且位于与偏距方向相反一侧。对于对心曲柄滑块机构,即偏距e = 0 的情况,显然其最小传动角γmin出现在曲柄垂直于导路时的位置。
对以曲柄为主动件的摆动导杆机构,因为滑块对导杆的作用力始终垂直于导杆,其传动角γ恒为90°,即γ = γmin = γmax =90°,表明导杆机构具有最好的传力性能。
2.止点
从Ft = F cosα知,当压力角α = 90°时,对从动件的作用力或力矩为零,此时连杆不能驱动从动件工作。机构处在这种位置称为止点,又称死点。如图2-20a)所示的曲柄摇杆机构,当从动曲柄AB与连杆BC共线时,出现压力角α = 90°,传动角γ = 0。如图2-20b)所示的曲柄滑块机构,如果以滑块作主动,则当从动曲柄AB与连杆BC共线时,外力F无法推动从动曲柄转动。机构处于止点位置,一方面驱动力作用降为零,从动件要依靠惯性越过止点;另一方面是方向不定,可能因偶然外力的影响造成反转。
四杆机构是否存在止点,取决于从动件是否与连杆共线。例如上述图2-20a)所示的曲柄摇杆机构,如果改摇杆主动为曲柄主动,则摇杆为从动件,因连杆BC与摇杆CD不存在共线的位置,故不存在止点。又例如前述图2-20b)所示的曲柄滑块机构,如果改曲柄为主动,就不存在止点。
止点的存在对机构运动是不利的,应尽量避免出现止点。当无法避免出现止点时,一般可以采用加大从动件惯性的方法,靠惯性帮助通过止点。例如内燃机曲轴上的飞轮。也可以采用机构错位排列的方法,靠两组机构止点位置差的作用通过各自的止点。
在实际工程应用中,有许多场合是利用止点位置来实现一定工作要求的。如图2-21a)所示为一种快速夹具,要求夹紧工件后夹紧反力不能自动松开夹具,所以将夹头构件1看成主动件,当连杆2和从动件3共线时,机构处于止点,夹紧反力N对摇杆3的作用力矩为零。这样,无论N有多大,也无法推动摇杆3而松开夹具。当我们用手搬动连杆2的延长部分时,因主动件的转换破坏了止点位置而轻易地松开工件。如图2-21b)所示为飞机起落架处于放下机轮的位置,地面反力作用于机轮上使AB件为主动件,从动件CD与连杆BC成一直线,机构处于止点,只要用很小的锁紧力作用于CD杆即可有效地保持着支撑状态。当飞机升空离地要收起机轮时,只要用较小力量推动CD,因主动件改为CD破坏了止点位置而轻易地收起机轮。此外,还有汽车发动机盖、折叠椅等。
第四节 平面四杆机构运动设计简介
四杆机构的设计方法有图解法、试验法、解析法三种。本节仅介绍图解法。
一、按给定的连杆长度和位置设计平面四杆机构
1.按连杆的预定位置设计四杆机构
【例2-2】 已知连杆BC的长度和依次占据的三个位置B1C1、B2C2、B3C3 ,如图2-22所示。求确定满足上述条件的铰链四杆机构的其它各杆件的长度和位置。
解:显然B点的运动轨迹是由B1、B2、B3三点所确定的圆弧,C点的运动轨迹是由C1、C2、C3三点所确定的圆弧,分别找出这两段圆弧的圆心A和D,也就完成了本四杆机构的设计。因为此时机架AD已定,连架杆CD和AB也已定。具体作法如下:
(1)确定比例尺,画出给定连杆的三个位置。实际机构往往要通过缩小或放大比例后才便于作图设计,应根据实际情况选择适当的比例尺 ,见式(1-1)。
(2)连结B1B2、B2B3 ,分别作直线段B1B2和B2B3的垂直平分线b12和b23(图中细实线),此两垂直平分线的交点A即为所求B1、B2、B3三点所确定圆弧的圆心。
(3)连结C1C2、C2C3,分别作直线段C1C2和C2C3的垂直平分线c12、c23(图中细实线)交于点D,即为所求C1、C2、C3三点所确定圆弧的圆心。
(4)以A点和D点作为连架铰链中心,分别连结AB3、B3C3、C3D(图中粗实线)即得所求四杆机构。从图中量得各杆的长度再乘以比例尺,就得到实际结构长度尺寸。
在实际工程中,有时只对连杆的两个极限位置提出要求。这样一来,要设计满足条件的四杆机构就会有很多种结果,这时应该根据实际情况提出附加条件。
【实训例2-3】 如图2-23所示的加热炉门启闭机构,图中Ⅰ为炉门关闭位置,使用要求在完全开启后门背朝上水平放置并略低于炉口下沿,见图中Ⅱ位置。
解:把炉门当作连杆BC,已知的两个位置B1C1和B2C2 ,B和C已成为两个铰点,分别作直线段B1B2、C1C2的平分线得b12和c12 ,另外两铰点A和D就在这两根平分线上。为确定A、D的位置,根据实际安装需要,希望A、D两铰链均安装在炉的正壁面上即图中yy位置,yy直线分别与b12、c12相交点A和D即为所求。
二、按给定的行程速比系数设计四杆机构
设计具有急回特性的四杆机构,一般是根据运动要求选定行程速比系数,然后根据机构极位的几何特点,结合其他辅助条件进行设计。
【实训例2-4】 已知行程速比系数K,摇杆长度lCD,最大摆角 ,请用图解法设计此曲柄摇杆机构。
解:设计过程如图2-24所示,具体步骤:
(1)由速比系数K计算极位角θ。由式(2-2)知
(2)选择合适的比例尺,作图求摇杆的极限位置。取摇杆长度lCD除以比例尺 得图中摇杆长CD,以CD为半径、任定点D为圆心、任定点C1为起点做弧C,使弧C所对应的圆心角等于或大于最大摆角 ,连接D点和C1点的线段C1D为摇杆的一个极限位置,过D点作与C1D夹角等于最大摆角 的射线交圆弧于C2点得摇杆的另一个极限位置C2D。
(3)求曲柄铰链中心。过C1点在D点同侧作C1C2的垂线H,过C2点作与D点同侧与直线段C1C2夹角为(900-θ)的直线J交直线H于点P,连接C2P,在直线段C2P上截取C2P/2得点O,以O点为圆点、OP为半径,画圆K ,在C1C2弧段以外在K上任取一点A为铰链中心。
(4)求曲柄和连杆的铰链中心。连接A、C2点得直线段AC2为曲柄与连杆长度之和,以A点为圆心、AC1为半径作弧交AC2于点E,可以证明曲柄长度AB = C2E/2,于是以A点为圆心、C2E/2为半径画弧交AC2于点B2为曲柄与连杆的铰接中心。
(5)计算各杆的实际长度。分别量取图中AB2、AD、B2C2的长度,计算得:
曲柄长 lAB = AB2,连杆长 lBC = B2C2 ,机架长 lAD = AD。
习题二
2-1 铰链四杆机构按运动形式可分为哪三种类型?各有什么特点?试举出它们的应用实例。
2-2 铰链四杆机构中曲柄存在的条件是什么?
2-3 机构的急回特性有何作用?判断四杆机构有无急回特性的根据是什么?
2-4 题图所示的铰链四杆机构中,各构件的长度已知,问分别以a、b、c、d为机架时,各得什么类型的机构?
2-5 标注出各机构在题图所示位置的压力角和传动角。
实训二 设计平面四杆机构
1.实训目的
掌握平面四杆机构的图解设计方法,初步了解和掌握计算机辅助设计在平面四杆机构设计中的应用。
2.实训内容和要求
(1)设计一铰链四杆机构,已知摇杆长LC D = 0.12m , 摆角 =45°,机架长LAD = 0.10m,行程速比系数K=1.4,试用图解法求曲柄和连杆的长度。
(2)使用图解法设计一摆动导杆机构。已知行程速比系数K=1.5,机架长LAD=0.18m。
可自选一题目,采用计算机辅助设计(用AutoCAD图解设计)。
3.实训过程。参考实训例2-4。
4. 采用AutoCAD图解设计的实训步骤
按照自选好的题目初步构思、拟定作图步骤,然后上机操作:①进入AutoCAD工作界面;②按作图步骤作图;③利用查询功能测出设计结果;④保存设计结果。

现实中的平面四杆机构,并分析它的运动,计算自由度

平面四杆机构实例之一,碎石机。
原动件杆1逆时针方向转动,经杆2传动,使压板3逆时针方向转动压碎石块。

杆1、杆2、杆3 为活动构件,n=3
A、B、C、D 共4个回转副,低副数PL =4
无高副,PH =0
自由度 F =3n -2PL -PH =3x3 -2x4 -0 =1

连杆机构

连杆机构是机械的组成部分中的一类,指由若干最低两个以上有确定相对运动的构件用赞同的方式实现联接组成的机构。平常在车辆发动机上面所说的是属于曲轴连杆机构,这个相关的机构。是车辆发动机系统中必不可缺少的一个部分。发动机曲轴连杆机构,其构成主要包括以下三部分:第一,发动机机体组:气缸体、气缸垫、气缸盖、曲轴箱、汽缸套及油底壳第二,活塞连杆组:活塞、活塞环、活塞销、连杆第三,曲轴飞轮组:曲轴、飞轮、扭转减振器、平衡轴。而平常生活中主要多见的这个还是平面连杆机构,这种机构在各种机械和仪器中获得广泛应用。最简单的平面连杆机构是由四个构件组成的,称为平面四杆机构。它的应用非常广泛。

相关推荐:

平面连杆机构的尺寸综合

求蓝光播放器推荐

求兰州各大名牌牛肉面的总店

平面模特tim叫什么

东风风神奕炫2020款价格

求来不及说我爱你同人文

平面设计比较好用的软件有哪些

求腊肉的腌制过程

标签: [db:标签]

声明:《平面连杆机构的尺寸综合》一文由排行榜大全(佚名 )网友供稿,版权归原作者本人所有,转载请注明出处。如果您对文章有异议,可在反馈入口提交处理!

最近更新

  • 助力提升效率的办公软件图书精选

    排行榜大全根据各大平台销量、口碑、评价等数据,甄选出了助力提升效率的办公软件图书精选:其中从Excel到Power BI、wps教程 从入门到精通以及E...

    数码 日期:2023-03-25

  • 平面连杆机构的尺寸综合

    尺寸综合的主要方法有解析法、图解法和实验法。1、解析法:以函数逼近论为基础的代数法。这种方法精度高,计算繁复,但随着电子计算机的应用和向...

    百科 日期:2023-03-25

  • 职场小白适读实用办公软件书单榜

    排行榜大全根据各大平台销量、口碑、评价等数据,甄选出了职场小白适读实用办公软件书单榜:其中高效商务办公 从新手到高手、杨阳 办公应用从入...

    数码 日期:2023-03-25

  • 求蓝光播放器推荐

    拥有蓝光播放的播放器:1、快搜影音播放器:支持蓝光播放的一款免费播放器,拥有网络加速和播放无缓冲拖放功能。2、泰初影音:一款拥有蓝光播放功能...

    百科 日期:2023-03-25

  • 揭开人工智能神秘面纱的图书精选

    排行榜大全根据各大平台销量、口碑、评价等数据,甄选出了揭开人工智能神秘面纱的图书精选:其中统计之美人工智能时代的科学思维、你一定爱读的...

    数码 日期:2023-03-25

  • 教您解决打印机无法共享的方法

    打印机是我们办公室使用到常见的设备,每个人的电脑都可以通过这台打印机打印资料之类的,有时候新加入的电脑想连接到共享的打印机时,在局域网设...

    数码 日期:2023-03-25

  • 内容翔实的人工智能领域图书精选

    排行榜大全根据各大平台销量、口碑、评价等数据,甄选出了内容翔实的人工智能领域图书精选:其中Python3破冰人工智能、scikitlearn机器学习以及...

    数码 日期:2023-03-25

  • 求兰州各大名牌牛肉面的总店

    1、萨达姆,味道鲜,辣油足;2、苍鹰,以异名和美味夺人眼球,博人口碑;3、半坡,味道不错,汤很地道,但原店卫生条件不佳;4、马有布,此店出品汤清、辣旺,很有些...

    百科 日期:2023-03-25

百科排行榜精选

邮箱不能为空
留下您的宝贵意见