> 首页 > 生活 > 百科 > 为什么半导体中塞贝克系数seebeckcoefficient随着载流子浓度上升而下降

为什么半导体中塞贝克系数seebeckcoefficient随着载流子浓度上升而下降

来源:网络 作者:佚名 时间:04-04 手机版

塞贝克效应又称作第一热电效应,是指由于两种不同电导体或半导体的温度差异而引起两种物质间的电压差的热电现象。一般规定热电势方向为:在热端电流由负流向正。在两种金属A和B组成的回路中,如果使两个接触点的温度不同,则在回路中将出现电流,称为热电流。相应的电动势称为热电势,其方向取决于温度梯度的方向。塞贝克效应的实质在于两种金属接触时会产生接触电势差电压,该电势差取决于两种金属中的电子溢出功不同及两种金属中电子浓度不同造成的。半导体的温差电动势较大,可用作温差发电器。

塞贝克效应的原理

产生Seebeck效应的机理,对于半导体和金属是不相同的。 产生Seebeck效应的主要原因是热端的载流子往冷端扩散的结果。例如p型半导体,由于其热端空穴的浓度较高,则空穴便从高温端向低温端扩散;在开路情况下,就在p型半导体的两端形成空间电荷(热端有正电荷,冷端有负电荷),同时在半导体内部出现电场;当扩散作用与电场的漂移作用相互抵消时,即达到稳定状态,在半导体的两端就出现了由于温度梯度所引起的电动势——温差电动势。自然,n型半导体的温差电动势的方向是从低温端指向高温端(Seebeck系数为负),相反,p型半导体的温差电动势的方向是高温端指向低温端(Seebeck系数为正),因此利用温差电动势的方向即可判断半导体的导电类型。
可见,在有温度差的半导体中,即存在电场,因此这时半导体的能带是倾斜的,并且其中的Fermi能级也是倾斜的;两端Fermi能级的差就等于温差电动势。
实际上,影响Seebeck效应的因素还有两个:
第一个因素是载流子的能量和速度。因为热端和冷端的载流子能量不同,这实际上就反映了半导体Fermi能级在两端存在差异,因此这种作用也会对温差电动势造成影响——增强Seebeck效应。
第二个因素是声子。因为热端的声子数多于冷端,则声子也将要从高温端向低温端扩散,并在扩散过程中可与载流子碰撞、把能量传递给载流子,从而加速了载流子的运动——声子牵引,这种作用会增加载流子在冷端的积累、增强Seebeck效应。
半导体的Seebeck效应较显著。一般,半导体的Seebeck系数为数百mV/K,这要比金属的高得多。 因为金属的载流子浓度和Fermi能级的位置基本上都不随温度而变化,所以金属的Seebeck效应必然很小,一般Seebeck系数为0~10mV/K。
虽然金属的Seebeck效应很小,但是在一定条件下还是可观的;实际上,利用金属Seebeck效应来检测高温的金属热电偶就是一种常用的元件。
产生金属Seebeck效应的机理较为复杂,可从两个方面来分析:
①电子从热端向冷端的扩散。然而这里的扩散不是浓度梯度(因为金属中的电子浓度与温度无关)所引起的,而是热端的电子具有更高的能量和速度所造成的。显然,如果这种作用是主要的,则这样产生的Seebeck效应的系数应该为负。
②电子自由程的影响。因为金属中虽然存在许多自由电子,但对导电有贡献的却主要是Fermi能级附近2kT范围内的所谓传导电子。而这些电子的平均自由程与遭受散射(声子散射、杂质和缺陷散射)的状况和能态密度随能量的变化情况有关。
如果热端电子的平均自由程是随着电子能量的增加而增大的话,那么热端的电子将由于一方面具有较大的能量,另一方面又具有较大的平均自由程,则热端电子向冷端的输运则是主要的过程,从而将产生Seebeck系数为负的Seebeck效应;金属Al、Mg、Pd、Pt等即如此。
相反,如果热端电子的平均自由程是随着电子能量的增加而减小的话,那么热端的电子虽然具有较大的能量,但是它们的平均自由程却很小,因此电子的输运将主要是从冷端向热端的输运,从而将产生Seebeck系数为正的Seebeck效应;金属Cu、Au、Li等即如此。塞贝克效应电势差的计算公式:
与分别为两种材料的塞贝克系数。如果与不随温度的变化而变化,上式即可表示成如下形式:
塞贝克后来还对一些金属材料做出了测量,并对35种金属排成一个序列(即Bi-Ni-Co-Pd-U-Cu-Mn-Ti-Hg-Pb-Sn-Cr-Mo-Rb-Ir-Au-Ag-Zn-W-Cd-Fe-As-Sb-Te-……),并指出,当序列中的任意两种金属构成闭合回路时,电流将从排序较前的金属经热接头流向排序较后的金属。

塞贝克系数是什么

塞贝克系数" 英文对照
seebeck coefficient;
"塞贝克系数" 在学术文献中的解释
1、为半导体材料的温差电动热(称为塞贝克系数).I为电流强度.To为冷端温度.ATHc为冷、热端间的温差.R为半导体致冷器内电阻
文献来源
http://define.cnki.net/WebForms/WebDefines.aspx?searchword=%e5%a1%9e%e8%b4%9d%e5%85%8b%e7%b3%bb%e6%95%b0

为什么金属的seebeck系数存在正负之分?

武汉理工的吧,我想问一下这个实验的数据处理需不需要excel???
我写的答案是这样的:金属seebeck效应产生机理可以从两个方面来分析,1,电子从热端向冷端的扩散.2,电子自由程。若电子从热端向冷端扩散作用是主要的,这样产生的seebeck效应系数为负。而若受电子自由程影响较大时,当热端电子的平均自由程是随着电子能量增加而增加时,产生的seebeck系数为负的seebeck效应。而当热端电子的平均自由程是随着电子能量增加而减小时,产生的seebeck系数为正的seebeck效应。

霍尔效应实验思考题:试分析温度的变化对实验结果的影响!!!!!急

美国物理学家霍尔(Hall,Edwin Herbert,1855-1938)于1879年在实验中发现,当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应。
霍尔效应用于磁场测量,一般在电机行业内使用,尚可作为通用的位置传感器用。温度测量不关它什么事情。
1821年,赛贝克发现,把两种不同的金属导体接成闭合电路时,如果把它的两个接点分别置于温度不同的两个环境中,则电路中就会有电流产生。这一现象称为塞贝克(Seebeck)效应。又称作第一热电效应。半导体中这种效应更加明显。
你所问的问题是塞贝克效应。几乎所有的工业领域都使用这个效应进行温度测量,常用的器件为热电偶。
在室温测量时候通常使用半导体器件。在高温和低温场合下则使用传统的金属热电偶。

请问塞贝克(seeback)效应是怎么回事,它的微观理论是什么?为什么会产生这样的效应?

即温差电效应,塞贝克 (Seebeck) 于 1821 发现在两种不同金属的连线,若将连线的一结点置于高温状态 T2(热端),而另一端处于开路且处于低温状态 T1 冷端,则在冷端存在开路电压 ΔV,此种现象被称为塞贝克效应,Seebeck 电压 ΔV 与热冷两端的温度差 ΔT 成正比,即
ΔV = kΔT = k(T2 - T1)
其中 k 是塞贝克参数,由材料本身的电子能带结构决定的。
微观解释大致是:所有可导电的材质皆会因内部当存在不同的温度分布层次(温度梯度)而产生相对不同的热电动势。
半导体由于具备优异的热电性能,成为制作赛贝尔效应模块的首选材料。从应用的角度讲,决定一种半导体热电材料的优劣不能仅凭其塞贝克参数的大小,还必须综合考虑其电导率,热导率等诸多因素。

为什么电动机的转轴人为的卡住后 电流会变大 电压会变小

由于热电转换。卡住时,是一个电能转化为热能的过程,此时电机就是一个电阻很小的纯电阻用电器,导致电路电流增大。

第一热电效应,亦称为“塞贝克(Seebeck)效应”。把两种不同的导体连接成闭合回路,如两个接点的温度不同,则回路中将产生一个电势,称为“热电势”,且温度差越大,热电势亦越大。

第二热电效应,亦称为“珀尔帖(Peltier)效应”。当电流通过由两种不同的金属组成的回路时,在金属导体中除了产生焦耳热之外,还要在接点吸收或放出一定热量。


扩展资料:

热电转换器也是一种热机,它从高温热源吸热,向低温热源放热,并将部分热转换成为电功。因此它的理论最高效率仍然是卡诺循环效率。由于各种损失的存在,热电转换器的效率与卡诺循环限制相去甚远。理论分析表明热电转换器的效率能够大于10%。

但实际建成装置的效率大都远低于这个值,随着半导体材料的发展,热电转换器的效率接近20%是个合理的目标。至于应用,可在非洲偏远地区用油灯的余热为收音机供电,可在海洋上用海水温差驱动声纳浮标。

参考资料来源:百度百科-热电转换

半导体致冷片原理

简单的说:利用制冷片,制冷片也叫热电半导体制冷组件,帕尔贴等。因为制冷片分为两面,一面吸热,一面散热,只是起到导热作用,本身不会产生冷,所以又叫致冷片,或者说应该是叫致冷片。
半导体热电偶由N型半导体和P型半导体组成。N型材料有多余的电子,有负温差电势。P型材料电子不足,有正温差电势;当电子从P型穿过结点至N型时,结点的温度降低,其能量必然增加,而且增加的能量相当于结点所消耗的能量。相反,当电子从N型流至P型材料时,结点的温度就会升高。
半导体元件可以用各种不同的连接方法来满足使用者的要求。把一个P型半导体元件和一个N型半导体元件联结成一对热电偶,接上直流电源后,在接头处就会产生温差和热量的转移。
在上面的接头处,电流方向是从N至P,温度下降并且吸热,这就是冷端;而在下面的一个接头处,电流方向是从P至N,温度上升并且放热,因此是热端。
因此是半导体致冷片由许多N型和P型半导体之颗粒互相排列而成,而N/P之间以一般的导体相连接而成一完整线路,通常是铜、铝或其他金属导体,最后由两片陶瓷片像夹心饼乾一样夹起来,陶瓷片必须绝缘且导热良好。

热电材料的两种应用方式?

热电材料是一种能将热能和电能相互转换的功能材料,1823年发现的塞贝克效应和1834年发现的帕尔帖效应为热电能量转换器和热电制冷的应用提供了理论依据。

随着空间探索兴趣的增加、医用物理学的进展以及在地球难于日益增加的资源考察与探索活动,需要开发一类能够自身供能且无需照看的电源系统,热电发电对这些应用尤其合适。

基本信息

中文名称

热电材料

解释

将热能和电能相互转换的功能材料

理论依据

帕尔帖效应

特点

体积小,重量轻,坚固且无噪音

目录

1应用意义

2特点与热电优值

3材料分类

   

4提高优势

5未来展望

6历史沿革

   

7新型材料

8力学性能

   

折叠编辑本段应用意义

对于遥远的太空探测器来说,放射性同位素供热的热电发电器是唯一的供电系统。已被成功的应用于美国宇航局发射的"旅行者一号"和"伽利略火星探测器"等宇航器上。利用自然界温差和工业废热均可用于热电发电,它能利用自然界存在的非污染能源,具有良好的综合社会效益。

利用帕尔帖效应制成的热电制冷机具有机械压缩制冷机难以媲美的优点:尺寸小、质量轻、无任何机械转动部分,工作无噪声,无液态或气态介质,因此不存在污染环境的问题,可实现精确控温,响应速度快,器件使用寿命长。还可为超导材料的使用提供低温环境。另外利用热电材料制备的微型元件用于制备微型电源、微区冷却、光通信激光二极管和红外线传感器的调温系统,大大拓展了热电材料的应用领域。

因此,热电材料是一种有着广泛应用前景的材料,在环境污染和能源危机日益严重的今天,进行新型热电材料的研究具有很强的现实意义。

折叠编辑本段特点与热电优值

折叠特点

制造热电发电机或热电致冷器的材料称为热电材料,是一种能实现电能与热能交互转变的材料。其优点如下:

(1)体积小,重量轻,坚固,且工作中无噪音;(2)温度控制可在±0.1℃之内;(3)不必使用CFC(CFC氯氟碳类物质,氟里昂。被认为会破坏臭气层),不会造成任何环境污染;(4)可回收热源并转变成电能(节约能源),使用寿命长,易于控制。

虽然其优点众多,但利用热电材料制成的装置其效率(<10%)仍远比传统冰箱或发电机小。所以若能大幅度提升这些热电材料的效率,将对广泛用于露营的手提式致冷器,太空应用和半导体晶片冷却等产生相当重要的影响。家庭与工业上的冷却将因热电装置无运动的部件,是坚固的,安静的,可靠的,且避免使用会破坏臭气层的含氯氟碳氢化合物。热电材料需要有高导电性以避免电阻所引起电功率之损失,同时亦需具有低热传导系数以使冷热两端的温差不会因热传导而改变。

折叠热电优值

材料的热电效率可定义热电优值 (Thermoelectric figure of merit) ZT来评估:

其中,S为塞贝克系数(thermoelectric power or Seebeck coefficient),T为绝对温度,σ为电导率,κ为导热系数。为了有一较高热电优值ZT,材料必须有高的塞贝克系数(S),高的电导率与低的导热系数。

请点击输入图片描述

折叠编辑本段材料分类

电热材料的选择可依其运作温度分为三类:

(1)碲化铋及其合金:这是被广为使用于热电致冷器的材料,其最佳运作温度<450℃。

(2)碲化铅及其合金:这是被广为使用于热电产生器的材料,其最佳运作温度大约为1000℃。

(3)硅锗合金:此类材料亦常应用于热电产生器,其最佳运作温度大约为1300℃。

随着纳米科技相关研究蓬勃发展,热电材料应用的相关研究亦是欧美日各国在纳米科技中全力发展的重点之一,不论在理论方面或实验方面均有很大的研究空间,纳米材料具有比块材更大的界面,以及量子局限化效应,故纳米结构的材料具有新的物理性质,产生新的界面与现象,这对提升ZT(热电优值)值遭遇瓶颈的热电材料预期应有突破性的改善,故纳米科技被视为寻找高ZT值热电材料的希望。

折叠编辑本段提高优势

提升热电材料ZT值的方法一般有两种,一为提高其功率因子(S2σ),或降低其热传导系数(κ)。影响功率因子的物理机制包括散射参数、能态密度、载子移动度及费米能级等四项。前三项一般被认为是材料的本质性质,只能依靠更好更纯的样品来改进,而实验上能控制功率因子的物理量为通过改变掺杂浓度来调整费米能级以达到最大的S2σ值。固体材料热传导系数(κ)包括了晶格热传导系数(κL)及电子热传导系数(κe),即κ=κL+κe。热电材料之热传导大部份是通过晶格来传导。晶格热传导系数(κL)正比于样品定容比热(CV)、声速及平均自由程度等三个物理量。同样,前二个物理量是材料的本质,无法改变。而平均自由程则随材料中杂质或晶界的多寡而改变,纳米结构的块材之特征在于具有纳米层级或具有部份纳米层级的微结构,当晶粒大小减小到纳米尺寸时就会产生新的界面,此界面上的局部原子排列为短程有序,有异于一般均质晶体的长程有序状态或是玻璃物质的无序状态,因此材料的性质不再仅仅由晶格上原子间的作用来决定,而必须考虑界面的贡献。

Whall和Parker首先提出二维多层膜结构。因量子井效应对热电材料传输性质的影响,多属于半导体的热电材料,若经MBE(分子束外延)或CVD(化学气相沉积)长成多层膜(或称超晶格)的结构后,其能带结构会因量子效应而使材料能隙加大,再加上膜与膜的界面亦会影响到样品的热传导系数,故将热电材料薄膜化后可预期会大幅改变其ZT值。例如,Koga研究团队理论预测在室温下Si(1.5nm)/Ge(2.0nm)的超晶格结构(于Si0.5Ge0.5基座),其ZT值要比Si块材大70倍。

除了二维的多层膜/超晶格结构外,一维的量子线结构也开始慢慢受到注意,研究者欲通过一维量子线更强的量子局限化效应来进一步提升热电材料之ZT值。例如,将熔融的热电材料Bi、Sb及Bi2Te3经高压注入多孔隙材料如阳极氧化铝或云母,可形成直径约8nm,长度约10m的纳米线。目这些纳米量子线阵列的量测都还在起步的阶段。上述的二维或一维纳米结构都因有基座或多孔隙材料的存在而使热电材料热传导系数的测量或实际应用产生相当的困难。

综上所述,用热电材料制成纳米线,薄膜与超晶格,确能提升热电势S与热电效率,使得ZT值难以提升这一困境的突破绽露了一线曙光,亦再次带动了全球研究热电材料的热潮,而且由理论或实验方面均已证实,具有纳米结构的热电材料要比块材有更好的热电性质。因此,近全世界正投入大量人力、物力于热电材料的研发上,希望能制造出高ZT值的热电材料。

折叠编辑本段未来展望

热电材料塞贝克效应和帕尔帖效应发现距今已有100余年的历史,无数的科学家已对其进行了深入而富有成效的研究和探索,取得了辉煌的成果。随着研究的不断深入,相信热电材料的性能将会进一步提高,必将成为我国新材料研究领域的一个新的热点。在今后的热电材料研究工作中,研究重点应集中在以下几个方面:

(1)利用传统半导体能带理论和现代量子理论,对具有不同晶体结构的材料进行塞贝克系数、电导率和热导率的计算,以求在更大范围内寻找热电优值ZT更高的新型热电材料。

(2)从理论和实验上研究材料的显微结构、制备工艺等对其热电性能的影响,特别是对超晶格热电材料、纳米热电材料和热电材料薄膜的研究,以进一步提高材料的热电性能。

(3)对己发现的高性能材料进行理论和实验研究,使其达到稳定的高热电性能。

(4)加强器件的制备工艺研究,以实现热电材料的产业化。

折叠编辑本段历史沿革

英文:thermoelectric material

将不同材料的导体连接起来,并通入电流,在不同导体的接触点--结点,将会吸收(或放出)热量.1834年,法国物理学家佩尔捷(J.C.A.Peltier)发现了上述热电效应.1838年,俄国物理学家楞次(L.Lenz)又做出了更具显示度的实验:用金属铋线和锑线构成结点,当电流沿某一方向流过结点时,结点上的水就会凝固成冰;如果反转电流方向,刚刚在结点上凝成的冰又会立即熔化成水.

热电效应本身是可逆的.如果把楞次实验中的直流电源换成灯泡,当我们向结点供给热量,灯泡便会亮起来.尽管当时的科学界对佩尔捷和楞次的发现十分重视,但发现并没有很快转化为应用.这是因为,金属的热电转换效率通常很低.直到20世纪50年代,一些具有优良热电转换性能的半导体材料被发现,热电技术(热电制冷和热电发电)的研究才成为一个热门课题.

在室温附近使用的半导体制冷材料以碲化铋(Bi2Te3)合金为基础.通过掺杂制成P型和N型半导体.如前所述,将一个P型柱和一个N型柱用金属板连接起来,便构成了半导体制冷器的一个基本单元,如果在结点处的电流方向是从N型柱流向P型柱,则结点将成为制冷单元的"冷头"(温度为Tc),而与直流电源连接的两个头将是制冷单元的"热端"(温度为Th).

N型半导体的费米能级EF位于禁带的上部,P型的则位于禁带的下部.当二者连接在一起时,它们的费米能级趋于"持平".于是,当电流从N型流向P型时(也就是空穴从N到P;电子从P到N),载流子的能量便会升高.因此,结点作为冷头就会从Tc端吸热,产生制冷效果.

佩尔捷系数,其中是单位时间内在结点处吸收的热量,I是电流强度,Π的物理意义是,单位电荷在越过结点时的能量差.在热电材料研究中,更容易测量的一个相关参数是泽贝克(Seebeck)系数α,,其中T是温度.显然,α描述单位电荷在越过结点时的熵差.

对于制冷应用来说,初看起来,电流越大越好,佩尔捷系数(或泽贝克系数)越大越好.不幸的是,实际非本征半导体的性质决定了二者不可兼得:电流大要求电导率σ高,而σ和α都是载流子浓度的函数.随着载流子浓度的增加,σ呈上升趋势,而α则下跌,结果ασ只可能在一个特定的载流子浓度下达到最大(注:由热激活产生的电子-空穴对本征载流子,对提高热电效益不起作用).

半导体制冷单元的P型柱和N型柱,都跨接在Tc和Th之间.这就要求它们具有大的热阻.否则,将会加大Tc和Th间的漏热熵增,从而抵消从Tc端吸热同时向Th端放热的制冷效果.最终决定热电材料性能优劣的是组合参数,其中κ是材料的热导率.参数Z和温度T的乘积ZT无量纲,它在评价材料时更常用,是性能最佳的热电材料,其ZT值大约是1.0.为要使热电设备与传统的制冷或发电设备竞争,ZT值应该大于2.

Glen Slack把上述要求归纳为"电子-晶体和声子-玻璃".也就是说,好的热电材料应该具有晶体那样的高电导和玻璃那样的低热导.在长程有序的晶体中,电子以布洛赫波的方式运动.刚性离子实点阵不会使传导电子的运动发生偏转.电阻的产生来源于电子同杂质、晶格缺陷以及热声子的碰撞.因此,在完善的晶体中σ可以很大.

半导体中的热导包含两方面的贡献:其一由载流子(假定是电子)的定向运动引起的(κe);其二是由于声子平衡分布集团的定向运动(κp).根据维德曼-弗兰兹定律,κe∝σ.人们不可能在要求大σ的同时,还要求小的κe.减小热导的潜力在于减小κp,它与晶格的有序程度密切相关:在长程有序的晶体中,热阻只能来源于三声子倒逆(umklapp)过程和缺陷、边界散射;在非晶态玻璃结构中,晶格无序大大限制了声子的平均自由程,从而添加了对声子的散射机制.因此,"声子-玻璃"的热导率κ可以很低.

以无量纲优值系数ZT来衡量热电材料:BiSb系列适用于50-150K温区;Bi2Te3系列适用于250-500K;PbTe系列适用于500-800K;SiGe系列适用于1100-1300K.低温热电器件(T≤220K)主要用于冷却计算机芯片和红外探测器.高温热电设备可将太阳能和核能转化成电能,主用于航天探测器和海上漂浮无人监测站的供电.氟里昂制冷剂的禁用,为半导体制冷的发展提供了新的契机.1998年秋季在美国波士顿召开的材料研究学会(MRS)学术会议上,热电材料研究再一次成为讨论的热点.

Brian Sales等研究了一类新型热电材料,叫作填隙方钴矿锑化物(filled skutterudite antimonides).未填隙时,材料的化学式是CoSb3(或Co4Sb12).晶体中每个Co4Sb12结构单元包含一个尺寸较大的笼形孔洞.如果将稀土原子(例如La)填入笼形孔洞,则化学式变为LaCo4Sb12.由于La原子处于相对宽松的空间内,它的振动幅值也较大.于是,在LaCo4Sb12中,Co4Sb12刚性骨架为材料的高电导提供了基础,而稀土La在笼中的振动加强了对声子的散射--减小了材料的热导.B.Sales 的工作朝着"电子-晶体和声子-玻璃"的方向迈出了第一步.

高压(~2GPa)技术已经被用于改进热电材料的性能.如果在高压下观察到了母材料性能的改善,人们将可以通过化学掺杂的办法获得类似的结构,并将它用于常压条件下.

ZrNiSn的σ和α都很高,但它的热导率κ并不低.或许可以通过加入第4或第5组元,增强对声子的"质量涨落散射",达到减小热导的目的.

准晶的结构复杂多变,具有"声子-玻璃"的性能.有关研究的重点是改善准晶的导电性能,将纳米金属(Ag)嵌入导电聚合物,当电流流过这种复合材料时,可以产生大的温度梯度.对此,还没有理论上的解释.

有两种低维热电材料具有应用前景:CsBi4Te6实际上就是填隙的Bi2Te3;硒(Se)掺杂的HfTe5,在T<220K的温区,其泽贝克系数α远远超出了Bi2Te3.

此外,薄膜、人工超晶格、纳米碳管、Bi纳米线和量子阱系统、类猫眼结构等都展现出了在改进热电材料性能方面的潜力.

折叠编辑本段新型材料

美国GMZ Energy4月22日宣布推出一款突破性的新型材料,有助于制造新一代更加清洁、能效更高的产品。这种新型热电材料使用了纳米技术,清洁环保,能够有效地将废弃的热能转化为电能,从而为绿色消费品及工业品的发展铺平道路,推动未来的可持续发展。

该款GMZ材料功能众多、应用广泛。它能优化电冰箱及空调的制冷功能,并能利用汽车尾气排放系统的热源产生动力。由于GMZ 材料已经研发成功,并具有成本效益及易于采用等特点,因此具备商业可行性。它可以用于现今许多产品,能减少能源消耗和温室气体排放。

"长期以来,因为高成本和低效率,热电材料一直未能在清洁技术中广泛运用,但现在我们已经克服了这些问题。"GMZ Energy的CEO Mike Clary说:"该技术所能达到的效率令人倍感兴奋,而GMZ Energy已经做好充分准备,于今日发布这种具备商业可行性的新材料,以促进其在日用品中的应用。"

折叠编辑本段力学性能

一般来说热电材料的力学性能较差,以Bi2Te3为例,该材料的结构为-Te-Bi-Te-Te-Bi-Te-层状结构,在Te-Te之间为van der Waals bonding,容易断裂,所以BiTe材料在收到压力时Te-Te层易产生滑移,导致断裂,变形。这使得该材料的使用寿命以及范围大大降低。

相关推荐:

为什么半导体中塞贝克系数seebeckcoefficient随着载流子浓度上升而下降

旅游开发对传统文化传承的利弊

什么换什么移成语

请问一个病人他一天吃早餐是吃什么样的水果好呢

旅游类大学大学有哪些

什么话什么说的成语

旅游类的app哪个比较好用

为什么国人爱在火车上不停的吃东西

标签: [db:标签]

声明:《为什么半导体中塞贝克系数seebeckcoefficient随着载流子浓度上升而下降》一文由排行榜大全(佚名 )网友供稿,版权归原作者本人所有,转载请注明出处。如果您对文章有异议,可在反馈入口提交处理!

最近更新

  • 为什么半导体中塞贝克系数seebeckcoefficient随着载流子浓度上升而下降

    塞贝克效应又称作第一热电效应,是指由于两种不同电导体或半导体的温度差异而引起两种物质间的电压差的热电现象。一般规定热电势方向为:在热端...

    百科 日期:2023-04-04

  • 旅游开发对传统文化传承的利弊

    利:1、旅游业的兴盛使得许多濒临失传的传统精神文化和物质文化在旅游大潮的触动下得到复苏,并已融入旅游市场,得到了重构和新生。2、旅游业的...

    百科 日期:2023-04-04

  • 什么换什么移成语

    物换星移解释:指景物改变了,星辰的位置也移动了,比喻时间的变化。出处:唐代王勃《秋日登洪府滕王阁饯别序》:“闲云潭影日悠悠,物换星移几度秋。”...

    百科 日期:2023-04-04

  • 请问一个病人他一天吃早餐是吃什么样的水果好呢

    1、苹果。术后建议每天吃1-2个苹果,俗话说:一天一苹果,医生远离我”。苹果的营养价值和食疗价值极高,苹果主要含有糖,果胶,有机酸,多种维生素,钙、磷...

    百科 日期:2023-04-04

  • 旅游类大学大学有哪些

    旅游类大学有桂林旅游专科学校,上海旅游高等专科学校,四川旅游学校等。1、桂林旅游专科学校。桂林旅游学院位于桂林市,是国家旅游局重点建设的...

    百科 日期:2023-04-04

  • 什么话什么说的成语

    无话可说,释义:没有什么话可以说,在某些场合下包含一种无奈,郁闷的情感。二话不说,释义:不说任何别的话。指立即行动。实话实说,释义:用直捷了当的方...

    百科 日期:2023-04-04

  • 旅游类的app哪个比较好用

    1、马蜂窝:是中国领先的自由行服务平台,由陈罡和吕刚创立于2006年,从2010年正式开始公司化运营。马蜂窝的景点、餐饮、酒店等点评信息均来自上...

    百科 日期:2023-04-04

  • 为什么国人爱在火车上不停的吃东西

    在火车上享用丰富的零食似乎是一种典型的中国特色,中国旅游指南网站这样写道:在中国的火车上,饕餮是一种美德。诸如面包、三明治等西方食物在这...

    百科 日期:2023-04-04

百科排行榜精选

邮箱不能为空
留下您的宝贵意见